Suppr超能文献

在具有真实离子浓度动态的微电路中对NaV1.1/SCN1A钠通道突变进行建模,提示了导致癫痫和偏瘫性偏头痛中兴奋性过高的不同GABA能机制。

Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine.

作者信息

Lemaire Louisiane, Desroches Mathieu, Krupa Martin, Pizzamiglio Lara, Scalmani Paolo, Mantegazza Massimo

机构信息

Inria Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis, France.

Université Côte d'Azur, Nice, France.

出版信息

PLoS Comput Biol. 2021 Jul 27;17(7):e1009239. doi: 10.1371/journal.pcbi.1009239. eCollection 2021 Jul.

Abstract

Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks' hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons' susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism.

摘要

编码电压门控钠通道NaV1.1的基因SCN1A的功能丧失突变会导致不同类型的癫痫,而功能获得性突变则会导致散发性和家族性偏瘫型偏头痛3型(FHM - 3)。然而,目前尚不清楚这些相反的效应如何能诱发涉及神经元网络过度兴奋的阵发性病理活动,而这种过度兴奋是癫痫(发作)或偏头痛(皮层扩散性去极化,CSD)所特有的。为了更好地理解导致这些病理活动起始的不同机制,我们使用了一个基于电导的双神经元模型,该模型由相互连接的GABA能神经元和锥体谷氨酸能神经元组成,我们在两个神经元中都纳入了离子浓度动态变化。我们通过增加中间神经元的持续性钠电流来模拟FHM - 3突变,并通过降低中间神经元的钠电导来模拟致癫痫突变。因此,我们在同一框架内研究了FHM - 3和致癫痫突变,仅修改两个参数。在我们的模型中,功能获得性FHM - 3突变的关键作用是每次动作电位时离子通量的改变(特别是由NaV1.1功能获得所诱导的电压门控钾通道的更大激活),以及由此导致的触发CSD的细胞外钾积累,这并非仅由放电频率的改变引起。另一方面,功能丧失性致癫痫突变会增加GABA能神经元对去极化阻滞的易感性,而在此之前放电频率没有重大改变。我们的建模结果在质量上与实验数据相关:FHM - 3突变情况下的钾积累以及致癫痫突变情况下GABA能神经元去极化阻滞的易化。这两种效应都可导致锥体神经元过度兴奋,在偏头痛情况下诱发GABA能神经元和锥体神经元的去极化阻滞。总体而言,我们的研究结果表明偏头痛和致癫痫的NaV1.1突变导致网络过度兴奋的机制不同,这意味着放电频率的改变可能不是唯一相关的病理机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d141/8345895/88e192bea0b9/pcbi.1009239.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验