Suppr超能文献

新皮层神经元阈下膜共振模型。

Models of subthreshold membrane resonance in neocortical neurons.

作者信息

Hutcheon B, Miura R M, Puil E

机构信息

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.

出版信息

J Neurophysiol. 1996 Aug;76(2):698-714. doi: 10.1152/jn.1996.76.2.698.

Abstract
  1. We obtained whole cell data from sensorimotor cortical neurons of in vitro slices (juvenile rats) and observed a low-frequency resonance (1-2 Hz) in their voltage responses. We constructed models of subthreshold membrane currents to determine whether a hyperpolarization-activated cation current (IH) is sufficient to account for this resonance. 2. Parameter values for a basic IH (BH) model were estimated from voltage-clamp experiments at room temperature. The BH model formed a component of a reduced membrane (RM) model. On numerical integration, the RM model exhibited voltage sags and rebounds to injected current pulses; maximal voltage responses to injected oscillatory currents occurred near 2 Hz. 3. We compared the experimentally measured frequency-response curves (FRCs) at room temperature with the theoretical FRCs derived from the RM model. The theoretical FRCs exhibited resonant humps with peaks between 1 and 2 Hz. At 36 degrees C, the theoretical FRCs peaked near 10 Hz. The characteristics of theoretical and observed FRCs were in close agreement, demonstrating that IH is sufficient to cause resonance. Thus we classified IH as a resonator current. 4. We developed a technique, the reactive current clamp (RCC), to inject a computer-calculated current corresponding to a membrane ionic current in response to the membrane potential of the neuron. This enabled us to study the interaction of an artificial ionic current with living neurons (electronic pharmacology or EP-method). Using the RCC, a simplified version of the BH model was used to cancel an endogenous IH (electronic antagonism) and to introduce an artificial IH (electronic expression) when an endogenous IH was absent. Antagonism of IH eliminated sags and rebounds, whereas expression of IH endowed neurons with resonance and the frequency-selective firing that accompanies resonance in neurons with an endogenous IH. Previous investigations have relied on the specificity of pharmacological agents to block ionic channels, e.g., Cs+ to block IH. However, Cs+ additionally affects other currents. This represents the first time an in vitro modeling technique (RCC) has been used to antagonize a specific endogenous current, IH. 5. A simplified RM model yielded values of the resonant frequency and Q (an index of the sharpness of resonance), which rose almost linearly between -55 and -80 mV. Resonant frequencies could be much higher than fH = (2 pi tau H) - 1 where tau H is the activation time constant for IH. 6. In the FRCs, resonance appeared as a hump at intermediate frequencies because of low- and high-frequency attenuations due to IH and membrane capacitance, respectively. Changing the parameters of IH altered the low-frequency attenuation and, hence, the resonance. Changes in the leak conductance affected both the low- and high-frequency attenuations. 7. We modeled an inwardly rectifying K+ current (IIR) and a persistent Na+ current (INaP) to study their effects on resonance. Neither current produced resonance in the absence of IH. We found that IIR attenuated, whereas INaP amplified resonance. Thus IIR and INaP are classified as attenuator and amplifier currents, respectively. 8. Resonators and attenuators differ in that they have longer and shorter time constants, respectively, compared with the membrane time constant. Therefore, an increase in the leak conductance decreases the membrane time constant, which can transform an attenuator into a resonator, altering the frequency response. This suggests a novel mechanism for modulating the frequency responses of neurons to inputs. 9. These investigations have provided a theoretical framework for detailed understanding of mechanisms that produce resonance in cortical neurons. Resonance is one aspect of the intrinsic rhythmicity of neurons. The rhythmicity due to IH resonance is latent until it is revealed by oscillatory inputs. (ABSTRACT TRUNCATED)
摘要
  1. 我们从体外切片(幼年大鼠)的感觉运动皮层神经元获取了全细胞数据,并观察到其电压响应中存在低频共振(1 - 2赫兹)。我们构建了阈下膜电流模型,以确定超极化激活阳离子电流(IH)是否足以解释这种共振现象。2. 基本IH(BH)模型的参数值是通过室温下的电压钳实验估算得出的。BH模型构成了简化膜(RM)模型的一个组成部分。在数值积分时,RM模型对注入的电流脉冲表现出电压下陷和反弹;对注入的振荡电流的最大电压响应出现在接近2赫兹处。3. 我们将室温下实验测量的频率响应曲线(FRCs)与从RM模型推导的理论FRCs进行了比较。理论FRCs呈现出共振峰,峰值在1至2赫兹之间。在36摄氏度时,理论FRCs在接近10赫兹处达到峰值。理论和观察到的FRCs的特征密切相符,表明IH足以引起共振。因此,我们将IH归类为共振器电流。4. 我们开发了一种技术,即反应性电流钳(RCC),用于根据神经元的膜电位注入与膜离子电流相对应的计算机计算电流。这使我们能够研究人工离子电流与活神经元之间的相互作用(电子药理学或EP方法)。使用RCC时,BH模型的简化版本被用于消除内源性IH(电子拮抗),并在没有内源性IH时引入人工IH(电子表达)。对IH的拮抗消除了下陷和反弹,而IH的表达赋予神经元共振以及在具有内源性IH的神经元中共振所伴随的频率选择性放电。先前的研究依赖于药理试剂阻断离子通道的特异性,例如用Cs + 阻断IH。然而,Cs + 还会影响其他电流。这是首次使用体外建模技术(RCC)来拮抗特定的内源性电流IH。5. 一个简化的RM模型得出了共振频率和Q值(共振锐度指标),它们在 - 55至 - 80毫伏之间几乎呈线性上升。共振频率可能远高于fH = (2πτH) - 1,其中τH是IH的激活时间常数。6. 在FRCs中,由于IH和膜电容分别导致的低频和高频衰减,共振在中频处表现为一个峰。改变IH的参数会改变低频衰减,从而改变共振。漏电导的变化会影响低频和高频衰减。7. 我们对内向整流钾电流(IIR)和持续性钠电流(INaP)进行建模,以研究它们对共振的影响。在没有IH的情况下,这两种电流都不会产生共振。我们发现IIR会衰减共振,而INaP会放大共振。因此,IIR和INaP分别被归类为衰减器电流和放大器电流。8. 共振器和衰减器的不同之处在于,与膜时间常数相比,它们的时间常数分别更长和更短。因此,漏电导的增加会降低膜时间常数,这可以将衰减器转变为共振器,改变频率响应。这提示了一种调节神经元对输入频率响应的新机制。9. 这些研究为详细理解皮层神经元中产生共振的机制提供了一个理论框架。共振是神经元内在节律性的一个方面。由于IH共振产生的节律性在被振荡输入揭示之前是潜在的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验