Suppr超能文献

利用原子力显微镜在过度拉伸的肌联蛋白分子中观察到的单个球状结构域及其结构展开。

Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.

作者信息

Mártonfalvi Zsolt, Kellermayer Miklós

机构信息

Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.

Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary ; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary.

出版信息

PLoS One. 2014 Jan 20;9(1):e85847. doi: 10.1371/journal.pone.0085847. eCollection 2014.

Abstract

Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin) domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.

摘要

肌联蛋白是一种巨大的弹性蛋白,负责产生被动肌肉力量。机械力会使肌联蛋白的球状结构域展开,但过度拉伸的肌联蛋白分子的确切结构尚不清楚。在这里,我们通过使用高分辨率原子力显微镜,分析了因弯月面后退而过度拉伸的肌联蛋白分子的结构。分子的轴向轮廓被平均宽度为27.7 nm的地形间隙中断,这与一个展开的球状(免疫球蛋白和纤连蛋白)结构域的长度非常吻合。然而,宽间隙宽度分布表明,可能还存在其他机制,如部分结构域展开和相邻结构域多聚体的展开。在折叠区域,我们分辨出平均间距为5.9 nm的小球,这与由具有延伸的结构域间连接区的球状结构域组成的肌联蛋白链一致。地形分析使我们能够将最远端展开的肌联蛋白区域定位到激酶结构域,这表明当分子受到过度拉伸力时,该结构域会系统性地展开。这些观察结果支持了这样的预测,即在拉伸力的作用下,肌联蛋白激酶的N端β-折叠会展开,从而暴露酶的ATP结合位点,进而有助于分子的机械传感功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84a/3896421/21865d160b81/pone.0085847.g001.jpg

相似文献

1
Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.
PLoS One. 2014 Jan 20;9(1):e85847. doi: 10.1371/journal.pone.0085847. eCollection 2014.
2
Titin domains progressively unfolded by force are homogenously distributed along the molecule.
Biophys J. 2015 Jul 21;109(2):340-5. doi: 10.1016/j.bpj.2015.06.002.
4
Force generation by titin folding.
Protein Sci. 2017 Jul;26(7):1380-1390. doi: 10.1002/pro.3117. Epub 2017 Mar 1.
5
Mechanics and structure of titin oligomers explored with atomic force microscopy.
Biochim Biophys Acta. 2003 Jun 5;1604(2):105-14. doi: 10.1016/s0005-2728(03)00029-x.
8
Mechanical properties of titin isoforms.
Adv Exp Med Biol. 2000;481:283-300; discussion 300-4. doi: 10.1007/978-1-4615-4267-4_17.
10
Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
J Am Chem Soc. 2015 Mar 18;137(10):3540-6. doi: 10.1021/ja5119368. Epub 2015 Mar 9.

引用本文的文献

1
Cryptic Extensibility in von Willebrand Factor Revealed by Molecular Nanodissection.
Int J Mol Sci. 2024 Jul 2;25(13):7296. doi: 10.3390/ijms25137296.
3
Nanosurgical Manipulation of Titin and Its M-Complex.
Nanomaterials (Basel). 2022 Jan 6;12(2):178. doi: 10.3390/nano12020178.
5
Titin domains progressively unfolded by force are homogenously distributed along the molecule.
Biophys J. 2015 Jul 21;109(2):340-5. doi: 10.1016/j.bpj.2015.06.002.

本文引用的文献

1
Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism.
J Biol Chem. 2013 Feb 22;288(8):5303-15. doi: 10.1074/jbc.M112.401372. Epub 2013 Jan 6.
2
Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.
Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):204-17. doi: 10.1016/j.pbiomolbio.2012.08.003. Epub 2012 Aug 11.
3
Structure and elasticity of desmin protofibrils explored with scanning force microscopy.
J Mol Recognit. 2011 Nov-Dec;24(6):1095-104. doi: 10.1002/jmr.1158.
5
The giant protein titin: a regulatory node that integrates myocyte signaling pathways.
J Biol Chem. 2011 Mar 25;286(12):9905-12. doi: 10.1074/jbc.R110.173260. Epub 2011 Jan 21.
6
Mechanoenzymatics of titin kinase.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90. doi: 10.1073/pnas.0805034105. Epub 2008 Sep 2.
7
A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1186-91. doi: 10.1073/pnas.0707163105. Epub 2008 Jan 22.
8
The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere.
Trends Cell Biol. 2005 Sep;15(9):477-85. doi: 10.1016/j.tcb.2005.07.001.
9
Dimerisation of myomesin: implications for the structure of the sarcomeric M-band.
J Mol Biol. 2005 Jan 14;345(2):289-98. doi: 10.1016/j.jmb.2004.10.040.
10
Reverse engineering of the giant muscle protein titin.
Nature. 2002 Aug 29;418(6901):998-1002. doi: 10.1038/nature00938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验