Murrant Coral L, Dodd Jason D, Foster Andrew J, Inch Kristin A, Muckle Fiona R, Ruiz Della A, Simpson Jeremy A, Scholl Jordan H P
Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
J Physiol. 2014 Mar 15;592(6):1267-81. doi: 10.1113/jphysiol.2013.264259. Epub 2014 Jan 27.
Blood flow data from contracting muscle in humans indicates that adenosine (ADO) stimulates the production of nitric oxide (NO) and vasodilating prostaglandins (PG) to produce arteriolar vasodilatation in a redundant fashion such that when one is inhibited the other can compensate. We sought to determine whether these redundant mechanisms are employed at the microvascular level. First, we determined whether PGs were involved in active hyperaemia at the microvascular level. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of 2A arterioles (maximum diameter 40 μm, third arteriolar level up from the capillaries) at a site of overlap with the stimulated muscle fibres before and after 2 min of contraction [stimulus frequencies: 4, 20 and 60 Hz at 15 contractions per minute (CPM) or contraction frequencies of 6, 15 or 60 CPM at 20 Hz; 250 ms train duration]. Muscle fibres were stimulated in the absence and presence of the phospholipase A2 inhibitor quinacrine. Further, we applied a range of concentrations of ADO (10(-7)-10(-5) M) extraluminally, (to mimic muscle contraction) in the absence and presence of L-NAME (NO synthase inhibitor), indomethacin (INDO, cyclooxygenase inhibitor) and L-NAME + INDO and observed the response of 2A arterioles. We repeated the latter experiment on a different level of the cremaster microvasculature (1A arterioles) and on the microvasculature of a different skeletal muscle (gluteus maximus, 2A arterioles). We observed that quinacrine inhibited vasodilatation during muscle contraction at intermediate and high contraction frequencies (15 and 60 CPM). L-NAME, INDO and L-NAME + INDO were not effective at inhibiting vasodilatation induced by any concentration of ADO tested in 2A and 1A arterioles in the cremaster muscle or 2A arterioles in the gluteus maximus muscle. Our data show that PGs are involved in the vasodilatation of the microvasculature in response to muscle contraction but did not obtain evidence that extraluminal ADO causes vasodilatation through NO or PG or both. Thus, we propose that PG-induced microvascular vasodilation during exercise is independent of ADO.
来自人体收缩肌肉的血流数据表明,腺苷(ADO)以冗余方式刺激一氧化氮(NO)和血管舒张性前列腺素(PG)的产生,从而引起小动脉血管舒张,即当其中一种机制受到抑制时,另一种机制可以起到补偿作用。我们试图确定这些冗余机制在微血管水平上是否也会发挥作用。首先,我们确定PG是否参与微血管水平的主动充血。我们在原位麻醉的仓鼠提睾肌标本中刺激四到五条骨骼肌纤维,并在收缩2分钟前后,测量与受刺激肌肉纤维重叠部位的2A小动脉(最大直径40μm,从毛细血管向上的第三级小动脉水平)直径的变化[刺激频率:每分钟15次收缩(CPM)时为4、20和60Hz,或20Hz时收缩频率为6、15或60CPM;串刺激持续时间250ms]。在不存在和存在磷脂酶A2抑制剂奎纳克林的情况下刺激肌肉纤维。此外,我们在不存在和存在L-NAME(NO合酶抑制剂)、吲哚美辛(INDO,环氧化酶抑制剂)以及L-NAME + INDO的情况下,向管腔外施加一系列浓度的ADO(10⁻⁷ - 10⁻⁵M)(以模拟肌肉收缩),并观察2A小动脉的反应。我们在提睾肌微血管的不同水平(1A小动脉)以及不同骨骼肌(臀大肌,2A小动脉)的微血管上重复了后一项实验。我们观察到,奎纳克林在中等和高收缩频率(15和60CPM)的肌肉收缩过程中抑制血管舒张。L-NAME、INDO以及L-NAME + INDO在抑制提睾肌中2A和1A小动脉或臀大肌中2A小动脉中任何测试浓度的ADO诱导的血管舒张方面均无效。我们的数据表明,PG参与了微血管对肌肉收缩的血管舒张反应,但没有获得证据表明管腔外ADO通过NO或PG或两者导致血管舒张。因此,我们提出运动期间PG诱导的微血管血管舒张独立于ADO。