Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.
J Appl Physiol (1985). 2010 Sep;109(3):768-77. doi: 10.1152/japplphysiol.00326.2010. Epub 2010 Jun 17.
The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with NG-nitro-L-arginine methyl ester (L-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (VO2) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body VO2 was measured, and leg VO2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53±4% by L-NAME+ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4±1 to 33.1±2 ml.min(-1).mmHg(-1) and tended to decrease after L-NAME infusion (31±2 ml.min(-1).mmHg(-1), P=0.09). With subsequent administration of ketorolac LVC decreased to 29.6±2 ml.min(-1).mmHg(-1) (P=0.02; n=9). While exercise continued, LVC returned to control values (33±2 ml.min(-1).mmHg(-1)) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with L-NAME infusion alone (P=0.08) but did not demonstrate the transient recovery. Whole body and leg VO2 increased with exercise but were not altered by L-NAME or L-NAME+ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising humans during prolonged steady-state exercise, which can be restored acutely. Furthermore, NOS and COX do not appear to influence muscle VO2 in untrained healthy young adults.
在运动过程中调节肌肉血流的血管扩张信号尚不清楚。我们假设,在年轻成年人中,通过分别用 NG-硝基-L-精氨酸甲酯(L-NAME)和酮咯酸序贯抑制一氧化氮合酶(NOS)和环氧化酶(COX),在稳定状态运动期间腿部肌肉的血管扩张将独立减少。我们测试了第二个假设,即根据一氧化氮对线粒体呼吸的抑制作用,NOS 和 COX 抑制将增加腿部耗氧量(VO2)。在 13 名年轻成年人中,我们在长时间(25 分钟)稳定状态的动态膝关节伸展运动(60 次/分钟,19 W)期间测量了心率(ECG)、血压(股静脉和动脉导管)、血气和股静脉血氧饱和度(股静脉内置血氧计)。通过股动脉多普勒超声测量腿部血流(LBF)。测量全身 VO2,并从血气和 LBF 计算腿部 VO2。在休息时,通过股动脉内输注乙酰胆碱(ACh)和硝普钠(NTP)测试抑制剂的功效。L-NAME+酮咯酸输注可使 ACh 引起的腿部血管传导(LVC)降低多达 53±4%,而 NTP 引起的 LVC 反应不受影响。运动使 LVC 从 4±1 增加到 33.1±2 ml.min(-1).mmHg(-1),并在 L-NAME 输注后趋于降低(31±2 ml.min(-1).mmHg(-1),P=0.09)。随后给予酮咯酸,LVC 降低至 29.6±2 ml.min(-1).mmHg(-1)(P=0.02;n=9)。当运动继续进行时,LVC 在 3 分钟内恢复到对照值(33±2 ml.min(-1).mmHg(-1)),这表明存在其他血管扩张机制。在另外 4 名受试者中,L-NAME 单独输注时 LVC 趋于降低(P=0.08),但没有表现出短暂的恢复。全身和腿部 VO2 随运动增加,但不受 L-NAME 或 L-NAME+酮咯酸的影响。这些数据表明,在长时间稳定状态运动期间,NOS 和 COX 介导的血管扩张在人类腿部中发挥了一定作用,这种作用可以迅速恢复。此外,NOS 和 COX 似乎不会影响未经训练的健康年轻成年人的肌肉 VO2。