Suppr超能文献

利用 200 纳米光栅周期的光栅邦斯-哈特干涉仪增强相衬。

Boosting phase contrast with a grating Bonse-Hart interferometer of 200 nanometre grating period.

机构信息

National Heart, Lung and Blood Institute, National Institutes of Health, , Bethesda, MD, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130028. doi: 10.1098/rsta.2013.0028. Print 2014 Mar 6.

Abstract

We report on a grating Bonse-Hart interferometer for phase-contrast imaging with hard X-rays. The method overcomes limitations in the level of sensitivity that can be achieved with the well-known Talbot grating interferometer, and without the stringent spectral filtering at any given incident angle imposed by the classic Bonse-Hart interferometer. The device operates in the far-field regime, where an incident beam is split by a diffraction grating into two widely separated beams, which are redirected by a second diffraction grating to merge at a third grating, where they coherently interfere. The wide separation of the interfering beams results in large phase contrast, and in some cases absolute phase images are obtained. Imaging experiments were performed using diffraction gratings of 200 nm period, at 22.5 keV and 1.5% spectral bandwidth on a bending-magnetic beamline. Novel design and fabrication process were used to achieve the small grating period. Using a slitted incident beam, we acquired absolute and differential phase images of lightly absorbing samples. An advantage of this method is that it uses only phase modulating gratings, which are easier to fabricate than absorption gratings of the same periods.

摘要

我们报告了一种用于硬 X 射线相衬成像的光栅 Bonse-Hart 干涉仪。该方法克服了著名的 Talbot 光栅干涉仪在灵敏度水平上的限制,而且没有经典 Bonse-Hart 干涉仪在任何给定入射角下所施加的严格光谱滤波。该装置在远场条件下工作,其中入射光束被衍射光栅分为两束宽间隔的光束,这两束光束由第二衍射光栅重新引导,在第三光栅处合并,在那里它们相干地干涉。干涉光束的宽间隔导致大的相位对比度,并且在某些情况下获得绝对相位图像。在弯曲磁光束线上,使用 200nm 周期的衍射光栅,在 22.5keV 和 1.5%的光谱带宽下进行了成像实验。采用了新颖的设计和制造工艺来实现小的光栅周期。使用狭缝入射光束,我们获得了轻度吸收样品的绝对和差分相位图像。该方法的一个优点是它只使用相位调制光栅,这些光栅比相同周期的吸收光栅更容易制造。

相似文献

1
Boosting phase contrast with a grating Bonse-Hart interferometer of 200 nanometre grating period.
Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130028. doi: 10.1098/rsta.2013.0028. Print 2014 Mar 6.
2
Interferometric hard x-ray phase contrast imaging at 204 nm grating period.
Rev Sci Instrum. 2013 Jan;84(1):013706. doi: 10.1063/1.4788910.
3
A four-grating interferometer for x-ray multi-contrast imaging.
Med Phys. 2024 May;51(5):3648-3657. doi: 10.1002/mp.17052. Epub 2024 Apr 1.
4
Spherical grating based x-ray Talbot interferometry.
Med Phys. 2015 Nov;42(11):6514-9. doi: 10.1118/1.4933195.
5
Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
Med Phys. 2021 Mar;48(3):1327-1340. doi: 10.1002/mp.14672. Epub 2021 Jan 10.
6
Fabrication of 200 nm period hard X-ray phase gratings.
Nano Lett. 2014 Jun 11;14(6):3453-8. doi: 10.1021/nl5009713. Epub 2014 May 27.
7
Performance and optimization of X-ray grating interferometry.
Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130027. doi: 10.1098/rsta.2013.0027. Print 2014 Mar 6.
8
X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source.
Rev Sci Instrum. 2011 Nov;82(11):113711. doi: 10.1063/1.3662411.
9
Parabolic gratings enhance the X-ray sensitivity of Talbot interferograms.
Sci Rep. 2023 Jun 27;13(1):9624. doi: 10.1038/s41598-023-36414-8.

引用本文的文献

1
Dark-field tomography of an attenuating object using intrinsic x-ray speckle tracking.
J Med Imaging (Bellingham). 2022 May;9(3):031502. doi: 10.1117/1.JMI.9.3.031502. Epub 2022 Feb 7.
2
'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.
Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130359. doi: 10.1098/rsta.2013.0359. Print 2014 Mar 6.

本文引用的文献

1
Interferometric hard x-ray phase contrast imaging at 204 nm grating period.
Rev Sci Instrum. 2013 Jan;84(1):013706. doi: 10.1063/1.4788910.
2
Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition.
J Micromech Microeng. 2012 Oct;22(10):105007. doi: 10.1088/0960-1317/22/10/105007. Epub 2012 Aug 23.
4
Observation of the Talbot effect using broadband hard x-ray beam.
Opt Express. 2010 Nov 22;18(24):24975-82. doi: 10.1364/OE.18.024975.
5
Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating.
Phys Rev Lett. 2009 Oct 30;103(18):180801. doi: 10.1103/PhysRevLett.103.180801. Epub 2009 Oct 28.
6
X-ray phase imaging with a grating interferometer.
Opt Express. 2005 Aug 8;13(16):6296-304. doi: 10.1364/opex.13.006296.
7
Phase-sensitive imaging and phase tomography using X-ray interferometers.
Opt Express. 2003 Sep 22;11(19):2303-14. doi: 10.1364/oe.11.002303.
9
Spatial harmonic imaging of X-ray scattering--initial results.
IEEE Trans Med Imaging. 2008 Aug;27(8):997-1002. doi: 10.1109/TMI.2007.912393.
10
Fractional Talbot imaging of phase gratings with hard x rays.
Opt Lett. 1997 Jul 15;22(14):1059-61. doi: 10.1364/ol.22.001059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验