Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
Sci Rep. 2023 Jun 27;13(1):9624. doi: 10.1038/s41598-023-36414-8.
In grating-based X-ray Talbot interferometry, the wave nature of X-ray radiation is exploited to generate phase contrast images of objects that do not generate sufficient contrast in conventional X-ray imaging relying on X-ray absorption. The phase sensitivity of this interferometric technique is proportional to the interferometer length and inversely proportional to the period of gratings. However, the limited spatial coherency of X-rays limits the maximum interferometer length, and the ability to obtain smaller-period gratings is limited by the manufacturing process. Here, we propose a new optical configuration that employs a combination of a converging parabolic micro-lens array and a diverging micro-lens array, instead of a binary phase grating. Without changing the grating period or the interferometer length, the phase signal is enhanced because the beam deflection by a sample is amplified through the array of converging-diverging micro-lens pairs. We demonstrate that the differential phase signal detected by our proposed set-up is twice that of a Talbot interferometer, using the same binary absorption grating, and with the same overall inter-grating distance.
在基于光栅的 X 射线泰伯干涉仪中,利用 X 射线辐射的波动性来生成物体的相位对比图像,这些物体在依赖 X 射线吸收的传统 X 射线成象中不会产生足够的对比。这种干涉技术的相位灵敏度与干涉仪长度成正比,与光栅的周期成反比。然而,X 射线的有限空间相干性限制了最大干涉仪长度,并且获得更小周期光栅的能力受到制造工艺的限制。在这里,我们提出了一种新的光学配置,它采用了会聚抛物线微透镜阵列和发散微透镜阵列的组合,而不是二元相位光栅。在不改变光栅周期或干涉仪长度的情况下,由于通过微透镜对的阵列对样品的光束偏转进行了放大,因此增强了相位信号。我们证明,使用相同的二进制吸收光栅和相同的总光栅间距离,我们提出的装置检测到的差分相位信号是泰伯干涉仪的两倍。