Suppr超能文献

利用基于对象的分析方法,从无人机获取的高分辨率 DSM 和多光谱图像中自动识别农业梯田。

Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.

机构信息

Monitoring Agricultural Resources Unit, Institute for Environment and Sustainability, European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy; Department of Botany, GI-1934-TB, IBADER, University of Santiago de Compostela, Escola Politécnica Superior, Campus Universitario s/n, E-27002 Lugo, Spain.

Monitoring Agricultural Resources Unit, Institute for Environment and Sustainability, European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain.

出版信息

J Environ Manage. 2014 Feb 15;134:117-26. doi: 10.1016/j.jenvman.2014.01.006. Epub 2014 Jan 29.

Abstract

Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery.

摘要

农业梯田是提供多种生态系统服务的特征。因此,欧洲共同农业政策 (CAP) 制定的措施支持对其进行维护。在 CAP 实施和监测的框架内,目前和未来都需要开发强大、可重复且具有成本效益的方法,以便在农场规模上自动识别和监测这些特征。这是一项复杂的任务,特别是当梯田与复杂的植被覆盖模式相关联时,如永久性作物(例如橄榄树)。在这项研究中,我们提出了一种使用商用现成 (COTS) 摄像机在无人机 (UAV) 上获取的图像自动且经济高效地识别梯田的新方法。我们使用最先进的计算机视觉技术,以低用户干预的方式生成 11 厘米空间分辨率的正射影像和数字表面模型 (DSM)。在第二阶段,这些数据用于使用多尺度面向对象的分类方法识别梯田。结果表明,即使在高度复杂的农业地区,该方法在 DSM 重建和图像分类方面也具有潜力。当根据田间 GPS 数据评估梯田高度时,无人机衍生的 DSM 的均方根误差 (RMSE) 低于 0.5 米。随后,仅根据从无人机图像中提取的光谱和高程数据,自动进行的梯田分类获得了 90%的整体准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验