Suppr超能文献

利用阴影的几何信息对从无人机(UAV)点云获取的数字表面模型(DSM)进行验证。

Validation of digital surface models (DSMs) retrieved from unmanned aerial vehicle (UAV) point clouds using geometrical information from shadows.

作者信息

Aboutalebi Mahyar, Torres-Rua Alfonso F, McKee Mac, Kustas William, Nieto Hector, Coopmans Calvin

机构信息

Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 8200 Old Main Hill, Logan, UT, USA.

U. S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory,Beltsville, MD, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2019;11008. doi: 10.1117/12.2519694. Epub 2019 May 14.

Abstract

Theoretically, the appearance of shadows in aerial imagery is not desirable for researchers because it leads to errors in object classification and bias in the calculation of indices. In contrast, shadows contain useful geometrical information about the objects blocking the light. Several studies have focused on estimation of building heights in urban areas using the length of shadows. This type of information can be used to predict the population of a region, water demand, etc., in urban areas. With the emergence of unmanned aerial vehicles (UAVs) and the availability of high- to super-high-resolution imagery, the important questions relating to shadows have received more attention. Three-dimensional imagery generated using UAV-based photogrammetric techniques can be very useful, particularly in agricultural applications such as in the development of an empirical equation between biomass or yield and the geometrical information of canopies or crops. However, evaluating the accuracy of the canopy or crop height requires labor-intensive efforts. In contrast, the geometrical relationship between the length of the shadows and the crop or canopy height can be inversely solved using the shadow length measured. In this study, object heights retrieved from UAV point clouds are validated using the geometrical shadow information retrieved from three sets of high-resolution imagery captured by Utah State University's AggieAir UAV system. These flights were conducted in 2014 and 2015 over a commercial vineyard located in California for the USDA Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program. The results showed that, although this approach could be computationally expensive, it is faster than fieldwork and does not require an expensive and accurate instrument such as a real-time kinematic (RTK) GPS.

摘要

从理论上讲,航空影像中阴影的出现对研究人员来说并不理想,因为它会导致物体分类错误和指数计算偏差。相比之下,阴影包含有关遮挡光线物体的有用几何信息。几项研究聚焦于利用阴影长度估算城市地区建筑物高度。这类信息可用于预测城市地区的区域人口、需水量等。随着无人机(UAV)的出现以及高分辨率至超高分辨率影像的可得性,与阴影相关的重要问题受到了更多关注。利用基于无人机的摄影测量技术生成的三维影像可能非常有用,特别是在农业应用中,例如在生物量或产量与冠层或作物几何信息之间建立经验方程。然而,评估冠层或作物高度的准确性需要耗费大量人力。相比之下,利用测量得到的阴影长度可以反解阴影长度与作物或冠层高度之间的几何关系。在本研究中,利用从犹他州立大学的AggieAir无人机系统拍摄的三组高分辨率影像中获取的几何阴影信息,对从无人机点云获取的物体高度进行了验证。这些飞行于2014年和2015年在加利福尼亚州的一个商业葡萄园上空进行,用于美国农业部农业研究服务局的葡萄遥感大气剖面与蒸散实验(GRAPEX)项目。结果表明,尽管这种方法在计算上可能成本较高,但它比实地调查更快,并且不需要诸如实时动态(RTK)GPS这样昂贵且精确的仪器。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验