文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鼠李糖乳杆菌 GG 可预防非酒精性脂肪性肝病。

Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice.

机构信息

Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.

Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany ; Department of Nutritional Science, Friedrich-Schiller-University, Jena, Germany.

出版信息

PLoS One. 2014 Jan 27;9(1):e80169. doi: 10.1371/journal.pone.0080169. eCollection 2014.


DOI:10.1371/journal.pone.0080169
PMID:24475018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3903470/
Abstract

OBJECTIVE: Experimental evidence revealed that obesity-associated non-alcoholic fatty liver disease (NAFLD) is linked to changes in intestinal permeability and translocation of bacterial products to the liver. Hitherto, no reliable therapy is available except for weight reduction. Within this study, we examined the possible effect of the probiotic bacterial strain Lactobacillus rhamnosus GG (LGG) as protective agent against experimental NAFLD in a mouse model. METHODS: Experimental NAFLD was induced by a high-fructose diet over eight weeks in C57BL/J6 mice. Fructose was administered via the drinking water containing 30% fructose with or without LGG at a concentration resulting in approximately 5×10(7) colony forming units/g body weight. Mice were examined for changes in small intestinal microbiota, gut barrier function, lipopolysaccharide (LPS) concentrations in the portal vein, liver inflammation and fat accumulation in the liver. RESULTS: LGG increased beneficial bacteria in the distal small intestine. Moreover, LGG reduced duodenal IκB protein levels and restored the duodenal tight junction protein concentration. Portal LPS (P≤0.05) was reduced and tended to attenuate TNF-α, IL-8R and IL-1β mRNA expression in the liver feeding a high-fructose diet supplemented with LGG. Furthermore liver fat accumulation and portal alanine-aminotransferase concentrations (P≤0.05) were attenuated in mice fed the high-fructose diet and LGG. CONCLUSIONS: We show for the first time that LGG protects mice from NAFLD induced by a high-fructose diet. The underlying mechanisms of protection likely involve an increase of beneficial bacteria, restoration of gut barrier function and subsequent attenuation of liver inflammation and steatosis.

摘要

目的:实验证据表明,与肥胖相关的非酒精性脂肪性肝病(NAFLD)与肠道通透性的变化和细菌产物向肝脏的易位有关。迄今为止,除了减肥之外,尚无可靠的治疗方法。在这项研究中,我们研究了益生菌菌株鼠李糖乳杆菌 GG(LGG)作为实验性非酒精性脂肪性肝病保护剂在小鼠模型中的可能作用。

方法:通过八周的高果糖饮食在 C57BL/J6 小鼠中诱导实验性非酒精性脂肪性肝病。果糖通过饮用水中的 30%果糖给药,其中含有或不含有浓度约为 5×10(7)个菌落形成单位/克体重的 LGG。检查小鼠小肠微生物群、肠道屏障功能、门静脉内脂多糖(LPS)浓度、肝脏炎症和肝脏脂肪堆积的变化。

结果:LGG 增加了远端小肠中的有益细菌。此外,LGG 降低了空肠 IκB 蛋白水平并恢复了空肠紧密连接蛋白浓度。补充 LGG 的高果糖饮食可降低门静脉 LPS(P≤0.05),并倾向于减轻肝脏中 TNF-α、IL-8R 和 IL-1β mRNA 的表达。此外,高果糖饮食和 LGG 喂养的小鼠肝脏脂肪堆积和门静脉丙氨酸氨基转移酶浓度(P≤0.05)减轻。

结论:我们首次表明,LGG 可保护小鼠免受高果糖饮食引起的非酒精性脂肪性肝病的侵害。保护的潜在机制可能涉及有益细菌的增加、肠道屏障功能的恢复以及随后的肝脏炎症和脂肪变性的减轻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/9fb793221ce7/pone.0080169.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/a1367d00fd72/pone.0080169.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/018c4c43b867/pone.0080169.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/db2c5ae160aa/pone.0080169.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/e59e5618a36c/pone.0080169.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/a332dd39b38c/pone.0080169.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/9fb793221ce7/pone.0080169.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/a1367d00fd72/pone.0080169.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/018c4c43b867/pone.0080169.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/db2c5ae160aa/pone.0080169.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/e59e5618a36c/pone.0080169.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/a332dd39b38c/pone.0080169.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57cb/3903470/9fb793221ce7/pone.0080169.g006.jpg

相似文献

[1]
Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice.

PLoS One. 2014-1-27

[2]
Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice.

Mol Metab. 2019-9-3

[3]
Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury.

Am J Physiol Gastrointest Liver Physiol. 2012-4-26

[4]
Lactobacillus rhamnosus GG combined with inosine ameliorates alcohol-induced liver injury through regulation of intestinal barrier and Treg/Th1 cells.

Toxicol Appl Pharmacol. 2022-3-15

[5]
Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice.

Biochem Biophys Res Commun. 2016-4-29

[6]
Lactobacillus rhamnosus GG and Oat Beta-Glucan Regulated Fatty Acid Profiles along the Gut-Liver-Brain Axis of Mice Fed with High Fat Diet and Demonstrated Antioxidant and Anti-Inflammatory Potentials.

Mol Nutr Food Res. 2020-9

[7]
Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

Toxicol Lett. 2016-1-22

[8]
Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease.

Toxicol Lett. 2015-5-5

[9]
Lactobacillus rhamnosus attenuates Thai chili extracts induced gut inflammation and dysbiosis despite capsaicin bactericidal effect against the probiotics, a possible toxicity of high dose capsaicin.

PLoS One. 2021

[10]
Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model.

J Nutr Biochem. 2012-6-27

引用本文的文献

[1]
Nutrients as epigenetic modulators in metabolic dysfunction-associated steatotic liver disease.

World J Hepatol. 2025-8-27

[2]
Strain-Specific Lactobacillus Probiotics Intervention in Mitigating Obesity and Metabolic Dysregulation via Gut Microbiota Modulation in a Mouse Model of High-Fat Diet.

Probiotics Antimicrob Proteins. 2025-8-29

[3]
Clinical Evidence on the Health Benefits and Safety of Probiotic Lacticaseibacillus rhamnosus: A Systematic Review.

Probiotics Antimicrob Proteins. 2025-7-11

[4]
Gut microbiota in non-alcoholic fatty liver disease: Pathophysiology, diagnosis, and therapeutics.

World J Hepatol. 2025-6-27

[5]
Effects of the stress hormone norepinephrine on the probiotic properties of : antibacterial colonization, anti-inflammation, and antioxidation.

Front Microbiol. 2025-2-10

[6]
Probiotic Supplementation Alleviates Corticosterone-Induced Fatty Liver Disease by Regulating Hepatic Lipogenesis and Increasing Gut Microbiota Diversity in Broilers.

Microorganisms. 2025-1-17

[7]
sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice.

Microorganisms. 2024-12-3

[8]
The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases.

Metabolites. 2024-12-13

[9]
Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future.

Probiotics Antimicrob Proteins. 2025-4

[10]
Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)-A Randomized Pilot Trial.

Nutrients. 2024-5-22

本文引用的文献

[1]
Recent progress on the role of ChREBP in glucose and lipid metabolism.

Endocr J. 2013-4-19

[2]
Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5-year prospective cohort study.

Hepatology. 2013-4

[3]
Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice.

Gut. 2012-11-29

[4]
[Anti-inflammatory mechanism of Lactobacillus rhamnosus GG in lipopolysaccharide- stimulated HT-29 cell].

Korean J Gastroenterol. 2012-8

[5]
Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model.

J Nutr Biochem. 2012-6-27

[6]
Gut microbiota and nonalcoholic fatty liver disease.

Ann Hepatol. 2012

[7]
Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury.

Am J Physiol Gastrointest Liver Physiol. 2012-4-26

[8]
Microbiota: Dysbiosis driven by inflammasome deficiency exacerbates hepatic steatosis and governs rate of NAFLD progression.

Nat Rev Gastroenterol Hepatol. 2012-2-21

[9]
Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28.

Benef Microbes. 2012-3-1

[10]
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.

Nature. 2012-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索