Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and.
Am J Physiol Regul Integr Comp Physiol. 2014 Mar 15;306(6):R429-37. doi: 10.1152/ajpregu.00431.2013. Epub 2014 Jan 29.
It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and cardiomyocyte size. These findings suggest that activation of PPAR-γ using rosiglitazone does not promote the maturation of cardiomyocytes; rather, it may decrease cardiac metabolism and compromise cardiac health later in life.
尚不清楚心肌细胞肥大和出生后脂肪酸氧化作为主要能量来源的转变是否依赖于心肌细胞代谢系统的成熟,或者是否依赖于出生前底物可用性的限制。本研究旨在探讨在妊娠晚期胎儿内给予过氧化物酶体增殖物激活受体-γ(PPAR-γ)激动剂罗格列酮是否可以刺激调节心脏生长和代谢的因子的表达,为出生做准备,并研究其对妊娠约 140 天的胎儿羊的心肌收缩力的影响。使用定量 RT-PCR 和 Western blot 分析分别定量检测调节生长和代谢的关键因子的 mRNA 表达和蛋白丰度。通过测量去皮心肌细胞束的 Ca(2+)敏感性和最大 Ca(2+)-激活力来确定心肌收缩力。罗格列酮处理的胎儿心脏中胰岛素信号分子的丰度较低,包括胰岛素受体-β、胰岛素受体底物-1(IRS-1)、磷酸化 IRS-1(Tyr-895)、磷脂酰肌醇 3-激酶(PI3K)调节亚基 p85、PI3K 催化亚基 p110α、磷酸化 3-磷酸肌醇依赖性蛋白激酶 1(Ser-241)、蛋白激酶 B(Akt-1)、磷酸化 Akt(Ser-273)、PKCζ、磷酸化 PKCζ(Thr-410)、Akt 底物 160 kDa(AS160)、磷酸化 AS160(Thr-642)和葡萄糖转运蛋白 4。此外,脂肪β氧化调节剂的心脏丰度较低,包括脂联素受体 1、AMPKα、磷酸化 AMPKα(Thr-172)、磷酸化乙酰辅酶 A 羧化酶(Ser-79)、肉碱棕榈酰转移酶-1 和 PGC-1α。罗格列酮处理组的心肌细胞大小也减小。在妊娠晚期绵羊胎儿中给予罗格列酮导致调节心脏葡萄糖摄取、脂肪酸β氧化和心肌细胞大小的因子丰度降低。这些发现表明,使用罗格列酮激活 PPAR-γ 不会促进心肌细胞的成熟;相反,它可能会降低心脏代谢并在以后的生活中损害心脏健康。