Suppr超能文献

基于锰六氰合铁酸盐衍生的 Mn3O4 纳米立方体-还原氧化石墨烯纳米复合材料及其在超级电容器中的电荷存储特性。

Manganese hexacyanoferrate derived Mn3O4 nanocubes-reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors.

机构信息

Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 006, India.

出版信息

Phys Chem Chem Phys. 2014 Mar 14;16(10):4952-61. doi: 10.1039/c3cp54788d.

Abstract

Mn3O4-reduced graphene oxide (RGO) nanocomposites were prepared by chemical decomposition of the manganese hexacyanoferrate (MnHCF) complex directly on the graphene surface. XRD studies revealed the formation of crystalline hausmannite Mn3O4 nanocubes in the as-prepared nanocomposites without any heat treatment. The FE-SEM images showed the formation of Mn3O4 nanocubes on the graphene surface in the as-prepared nanocomposites. HR-TEM studies confirmed the homogeneous dispersion of ∼25 nm Mn3O4 nanocubes on graphene nanosheets. The amount of Mn3O4 nanocubes and graphene in the nanocomposites was estimated using TGA analysis from room temperature to 800 °C in air. The FT-IR and Raman spectroscopic analysis confirmed the functional groups in the nanocomposites and defects in graphene nanosheets in the nanocomposites. Cyclic voltammetry and galvanostatic charge-discharge experiments demonstrated a high specific capacitance of 131 F g(-1) in 1 M Na2SO4 electrolyte at a current density of 0.5 A g(-1) for the RGM-0.5 nanocomposite. A capacitance retention of 99% was observed for 500 charge-discharge cycles at a current density of 5 A g(-1), which conformed the excellent stability of the RGM electrodes. The prepared Mn3O4-RGO nanocomposites are promising for electrochemical energy storage.

摘要

通过直接在石墨烯表面上化学分解铁氰化锰(MnHCF)配合物来制备 Mn3O4-还原氧化石墨烯(RGO)纳米复合材料。XRD 研究表明,在没有任何热处理的情况下,在制备的纳米复合材料中形成了结晶黑锰矿 Mn3O4纳米立方体。FE-SEM 图像显示,在制备的纳米复合材料中,Mn3O4纳米立方体在石墨烯表面上形成。HR-TEM 研究证实了~25nm Mn3O4纳米立方体在石墨烯纳米片上的均匀分散。通过在空气中从室温到 800°C 的 TGA 分析,估算了纳米复合材料中 Mn3O4纳米立方体和石墨烯的量。FT-IR 和拉曼光谱分析证实了纳米复合材料中的官能团和纳米复合材料中石墨烯纳米片的缺陷。在 1M Na2SO4 电解质中,在 0.5A g(-1)的电流密度下,RGM-0.5 纳米复合材料的比电容为 131 F g(-1)。在 5A g(-1)的电流密度下进行 500 次充放电循环后,电容保持率为 99%,这证明了 RGM 电极具有优异的稳定性。制备的 Mn3O4-RGO 纳米复合材料有望用于电化学储能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验