State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Phys Chem Chem Phys. 2012 Dec 21;14(47):16331-7. doi: 10.1039/c2cp43673f. Epub 2012 Nov 6.
A method for producing nanocomposites of transition metal oxides A(3)O(4) (where A represents Mn, Fe or Co) and graphene nanosheets (GNS) is presented. The reduction of graphene oxide (GO) and the formation of A(3)O(4) nanoparticles (NPs) were carried out simultaneously during the reaction. The electrochemical properties of A(3)O(4)-GNS nanocomposites as electrode materials for supercapacitors are investigated by cyclic voltammetry and galvanostatic charge-discharge tests. The as-prepared Mn(3)O(4)-GNS, Fe(3)O(4)-GNS and Co(3)O(4)-GNS nanocomposites exhibit large specific capacitance (708, 358 and 240 F g(-1), respectively), high energy density (20, 10 and 7 W h kg(-1), respectively) and good electrochemical stability (retention of 73%, 67.8% and 95.8%, respectively, after 1000 charge-discharge cycles). The excellent electrochemical performance of the A(3)O(4)-graphene nanocomposites indicates great potential in the application in commercial supercapacitors.
一种制备过渡金属氧化物 A(3)O(4)(其中 A 代表 Mn、Fe 或 Co)和石墨烯纳米片(GNS)纳米复合材料的方法。该方法在反应过程中同时进行了氧化石墨烯(GO)的还原和 A(3)O(4)纳米粒子(NPs)的形成。通过循环伏安法和恒电流充放电测试研究了作为超级电容器电极材料的 A(3)O(4)-GNS 纳米复合材料的电化学性能。所制备的 Mn(3)O(4)-GNS、Fe(3)O(4)-GNS 和 Co(3)O(4)-GNS 纳米复合材料分别具有高比电容(分别为 708、358 和 240 F g(-1))、高能量密度(分别为 20、10 和 7 W h kg(-1))和良好的电化学稳定性(经过 1000 次充放电循环后,分别保持 73%、67.8%和 95.8%)。A(3)O(4)-石墨烯纳米复合材料具有优异的电化学性能,表明其在商业超级电容器中的应用具有巨大潜力。