Wildevuur C R, van der Lei B, Schakenraad J M
Department of Cardiopulmonary Surgery, University Hospital, Groningen, The Netherlands.
Biomaterials. 1987 Nov;8(6):418-22. doi: 10.1016/0142-9612(87)90076-7.
In this report, an overview is given of the research concerning the development of a new type of small-calibre vascular graft: a hydrophilic, microporous, compliant, biodegradable graft is presented, which functions as a temporary scaffold for the regeneration of a new arterial wall (neoartery). The basic healing process, the distinct effects of hydrophilicity, microporosity, compliance and biodegradation, the smooth muscle cell orientation and the effect of cell-seeding on this healing process in these grafts are described and discussed. It is concluded that vascular grafts, prepared from a material of optimal hydrophilicity, microporosity, compliance and rate of biodegradation, combined with smooth muscle and/or endothelial cell-seeding may provide a rapid development of a neoartery independent of the graft length.