Suppr超能文献

胰淀素激活分布于中枢神经系统的核团以控制能量平衡。

Amylin activates distributed CNS nuclei to control energy balance.

作者信息

Mietlicki-Baase Elizabeth G, Hayes Matthew R

机构信息

Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Physiol Behav. 2014 Sep;136:39-46. doi: 10.1016/j.physbeh.2014.01.013. Epub 2014 Jan 28.

Abstract

Amylin is a pancreas-derived neuropeptide that acts in the central nervous system (CNS) to reduce food intake. Much of the literature describing the anorectic effects of amylin are focused on amylin's actions in the area postrema, a hindbrain circumventricular structure. Although the area postrema is certainly an important site that mediates the intake-suppressive effects of amylin, several pieces of evidence indicate that amylin may also promote negative energy balance through action in additional CNS nuclei, including hypothalamic and mesolimbic structures. Therefore, this review highlights the distributed neural network mediating the feeding effects of amylin signaling with special attention being devoted to the recent discovery that the ventral tegmental area is physiologically relevant for amylin-mediated control of feeding. The production of amylin by alternative, extra-pancreatic sources and its potential relevance to food intake regulation is also considered. Finally, the utility of amylin and amylin-like compounds as a component of combination pharmacotherapies for the treatment of obesity is discussed.

摘要

胰淀素是一种源自胰腺的神经肽,在中枢神经系统(CNS)中发挥作用以减少食物摄入量。许多描述胰淀素厌食作用的文献都集中在延髓后区,这是一种后脑室周结构中胰淀素的作用。虽然延髓后区无疑是介导胰淀素摄入抑制作用的重要部位,但有几条证据表明,胰淀素也可能通过在包括下丘脑和中脑边缘结构在内的其他中枢神经系统核团中的作用来促进负能量平衡。因此,本综述重点介绍了介导胰淀素信号传导对进食影响的分布式神经网络,并特别关注最近发现的腹侧被盖区在生理上与胰淀素介导的进食控制相关。还考虑了胰腺外其他来源产生胰淀素及其与食物摄入调节的潜在相关性。最后,讨论了胰淀素和类胰淀素化合物作为肥胖联合药物治疗组成部分的效用。

相似文献

1
Amylin activates distributed CNS nuclei to control energy balance.
Physiol Behav. 2014 Sep;136:39-46. doi: 10.1016/j.physbeh.2014.01.013. Epub 2014 Jan 28.
2
Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake.
Am J Physiol Endocrinol Metab. 2015 Jun 15;308(12):E1116-22. doi: 10.1152/ajpendo.00087.2015. Epub 2015 Apr 21.
3
Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling.
Biol Psychiatry. 2017 Dec 1;82(11):828-838. doi: 10.1016/j.biopsych.2016.12.028. Epub 2017 Jan 10.
4
Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake.
Neuropsychopharmacology. 2013 Aug;38(9):1685-97. doi: 10.1038/npp.2013.66. Epub 2013 Mar 8.
5
Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect.
Am J Physiol Regul Integr Comp Physiol. 2012 Feb 1;302(3):R340-51. doi: 10.1152/ajpregu.00380.2011. Epub 2011 Nov 30.
6
Amylin modulates the mesolimbic dopamine system to control energy balance.
Neuropsychopharmacology. 2015 Jan;40(2):372-85. doi: 10.1038/npp.2014.180. Epub 2014 Jul 18.
7
Effects of amylin on eating and adiposity.
Handb Exp Pharmacol. 2012(209):231-50. doi: 10.1007/978-3-642-24716-3_10.
8
Amylin: Pharmacology, Physiology, and Clinical Potential.
Pharmacol Rev. 2015 Jul;67(3):564-600. doi: 10.1124/pr.115.010629.
9
Amylinergic control of food intake.
Physiol Behav. 2006 Nov 30;89(4):465-71. doi: 10.1016/j.physbeh.2006.04.001. Epub 2006 May 11.
10
Control of food intake and energy expenditure by amylin-therapeutic implications.
Int J Obes (Lond). 2009 Apr;33 Suppl 1:S24-7. doi: 10.1038/ijo.2009.13.

引用本文的文献

1
Roles for Prlhr/GPR10 and Npffr2/GPR74 in feeding responses to PrRP.
Mol Metab. 2025 Feb;92:102093. doi: 10.1016/j.molmet.2024.102093. Epub 2025 Jan 2.
3
Newer pharmacological interventions directed at gut hormones for obesity.
Br J Pharmacol. 2024 Apr;181(8):1153-1164. doi: 10.1111/bph.16278. Epub 2023 Nov 30.
4
Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights.
Physiol Behav. 2023 Sep 1;268:114236. doi: 10.1016/j.physbeh.2023.114236. Epub 2023 May 12.
5
Mediators of Amylin Action in Metabolic Control.
J Clin Med. 2022 Apr 15;11(8):2207. doi: 10.3390/jcm11082207.
6
Amylin as a Future Obesity Treatment.
J Obes Metab Syndr. 2021 Dec 30;30(4):320-325. doi: 10.7570/jomes21071.
7
The long-acting amylin/calcitonin receptor agonist ZP5461 suppresses food intake and body weight in male rats.
Am J Physiol Regul Integr Comp Physiol. 2021 Aug 1;321(2):R250-R259. doi: 10.1152/ajpregu.00337.2020. Epub 2021 Jul 14.
8
Effects of sub-chronic amylin receptor activation on alcohol-induced locomotor stimulation and monoamine levels in mice.
Psychopharmacology (Berl). 2020 Nov;237(11):3249-3257. doi: 10.1007/s00213-020-05607-8. Epub 2020 Jul 10.
9
REDUCTION IN SUBCUTANEOUS INSULIN REQUIREMENTS IN TETRAPLEGIC TYPE 1 DIABETIC WITH CERVICAL SPINAL CORD INJURY FOLLOWING PRAMLINTIDE TREATMENT.
AACE Clin Case Rep. 2020 May 11;6(3):e132-e134. doi: 10.4158/ACCR-2019-0461. eCollection 2020 May-Jun.
10
Palatable food access impacts expression of amylin receptor components in the mesocorticolimbic system.
Exp Physiol. 2020 Jun;105(6):1012-1024. doi: 10.1113/EP088356. Epub 2020 May 13.

本文引用的文献

1
Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors.
Endocrinology. 2014 Jan;155(1):21-6. doi: 10.1210/en.2013-1658. Epub 2013 Dec 20.
2
The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors.
Am J Physiol Endocrinol Metab. 2013 Dec 1;305(11):E1367-74. doi: 10.1152/ajpendo.00413.2013. Epub 2013 Oct 8.
3
Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake.
Neuropsychopharmacology. 2013 Aug;38(9):1685-97. doi: 10.1038/npp.2013.66. Epub 2013 Mar 8.
4
Molecular mechanisms of central leptin resistance in obesity.
Arch Pharm Res. 2013 Feb;36(2):201-7. doi: 10.1007/s12272-013-0020-y. Epub 2013 Jan 29.
5
Understanding synergy.
Am J Physiol Endocrinol Metab. 2013 Feb 1;304(3):E237-53. doi: 10.1152/ajpendo.00308.2012. Epub 2012 Dec 4.
6
Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance.
Cell Metab. 2012 Sep 5;16(3):296-309. doi: 10.1016/j.cmet.2012.06.015. Epub 2012 Aug 16.
7
The interaction of amylin with other hormones in the control of eating.
Diabetes Obes Metab. 2013 Feb;15(2):99-111. doi: 10.1111/j.1463-1326.2012.01670.x. Epub 2012 Aug 29.
8
Endogenous leptin receptor signaling in the medial nucleus tractus solitarius affects meal size and potentiates intestinal satiation signals.
Am J Physiol Endocrinol Metab. 2012 Aug 15;303(4):E496-503. doi: 10.1152/ajpendo.00205.2012. Epub 2012 Jun 12.
10
AMPK: a nutrient and energy sensor that maintains energy homeostasis.
Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62. doi: 10.1038/nrm3311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验