Valadez-Pérez Néstor E, Liu Yun, Eberle Aaron P R, Wagner Norman J, Castañeda-Priego Ramón
División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico and The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, USA.
The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, USA and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):060302. doi: 10.1103/PhysRevE.88.060302. Epub 2013 Dec 6.
One major goal in condensed matter is identifying the physical mechanisms that lead to arrested states of matter, especially gels and glasses. The complex nature and microscopic details of each particular system are relevant. However, from both scientific and technological viewpoints, a general, consistent and unified definition is of paramount importance. Through Monte Carlo computer simulations of states identified in experiments, we demonstrate that dynamical arrest in adhesive hard-sphere dispersions is the result of rigidity percolation with coordination number 〈n(b)〉 equal to 2.4. This corresponds to an established mechanism leading to mechanical transitions in network-forming materials [Phys. Rev. Lett. 54, 2107 (1985)]. Our findings connect the concept of critical gel formation in colloidal suspensions with short-range attractive interactions to the universal concept of rigidity percolation. Furthermore, the bond, angular, and local distributions along the gelation line are explicitly studied in order to determine the topology of the structure at the critical gel state.
凝聚态物理的一个主要目标是确定导致物质停滞状态的物理机制,尤其是凝胶和玻璃态。每个特定系统的复杂性质和微观细节都很重要。然而,从科学和技术的角度来看,一个通用、一致且统一的定义至关重要。通过对实验中确定的状态进行蒙特卡罗计算机模拟,我们证明了粘性硬球分散体中的动力学停滞是配位数〈n(b)〉等于2.4的刚性渗流的结果。这对应于一种已确立的导致网络形成材料中机械转变的机制[《物理评论快报》54, 2107 (1985)]。我们的发现将具有短程吸引相互作用的胶体悬浮液中临界凝胶形成的概念与刚性渗流的通用概念联系起来。此外,还明确研究了沿凝胶化线的键、角度和局部分布,以确定临界凝胶状态下结构的拓扑结构。