Suppr超能文献

胶体凝胶的固化和热加工的最小条件。

Minimal conditions for solidification and thermal processing of colloidal gels.

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106.

Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY 14623.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2215922120. doi: 10.1073/pnas.2215922120. Epub 2023 Jun 12.

Abstract

Colloidal gelation is used to form processable soft solids from a wide range of functional materials. Although multiple gelation routes are known to create gels of different types, the microscopic processes during gelation that differentiate them remain murky. A fundamental question is how the thermodynamic quench influences the microscopic driving forces of gelation, and determines the threshold or minimal conditions where gels form. We present a method that predicts these conditions on a colloidal phase diagram, and mechanistically connects the quench path of attractive and thermal forces to the emergence of gelled states. Our method employs systematically varied quenches of a colloidal fluid over a range of volume fractions to identify minimal conditions for gel solidification. The method is applied to experimental and simulated systems to test its generality toward attractions with varied shapes. Using structural and rheological characterization, we show that all gels incorporate elements of percolation, phase separation, and glassy arrest, where the quench path sets their interplay and determines the shape of the gelation boundary. We find that the slope of the gelation boundary corresponds to the dominant gelation mechanism, and its location approximately scales with the equilibrium fluid critical point. These results are insensitive to potential shape, suggesting that this interplay of mechanisms is applicable to a wide range of colloidal systems. By resolving regions of the phase diagram where this interplay evolves in time, we elucidate how programmed quenches to the gelled state could be used to effectively tailor gel structure and mechanics.

摘要

胶态凝胶可将多种功能材料加工成软固体。虽然有多种凝胶化途径可形成不同类型的凝胶,但导致它们分化的凝胶化微观过程仍不清楚。一个基本问题是热力学淬火如何影响凝胶化的微观驱动力,并确定凝胶形成的阈值或最小条件。我们提出了一种在胶体相图上预测这些条件的方法,并从力学上把吸引力和热的淬火路径与凝胶态的出现联系起来。我们的方法采用系统地改变胶体流体在一系列体积分数下的淬火来确定凝胶固化的最小条件。该方法应用于实验和模拟系统,以测试其对不同形状吸引力的通用性。通过结构和流变学的特征,我们发现所有的凝胶都包含了渗透、相分离和玻璃化停滞的元素,其中淬火路径决定了它们的相互作用,从而决定了凝胶化边界的形状。我们发现凝胶化边界的斜率对应于主要的凝胶化机制,其位置大约与平衡流体临界点成比例。这些结果对潜在的形状不敏感,这表明这种机制的相互作用适用于广泛的胶体系统。通过解析相图中这种相互作用随时间演变的区域,我们阐明了如何通过对凝胶态进行程序淬火来有效地调整凝胶的结构和力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a5a/10288545/8653247761e4/pnas.2215922120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验