Abad E, Yuste S B, Lindenberg Katja
Departamento de Física Aplicada, Centro Universitario de Mérida, Universidad de Extremadura, E-06800 Mérida, Spain.
Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062110. doi: 10.1103/PhysRevE.88.062110. Epub 2013 Dec 5.
We study how an evanescence process affects the number of distinct sites visited by a continuous-time random walker in one dimension. We distinguish two very different cases, namely, when evanescence can only occur concurrently with a jump, and when evanescence can occur at any time. The first is characteristic of trapping processes on a lattice, whereas the second is associated with spontaneous death processes such as radioactive decay. In both of these situations we consider three different forms of the waiting time distribution between jumps, namely, exponential, long tailed, and ultraslow.
我们研究了一个消逝过程如何影响一维连续时间随机游走者访问的不同位点的数量。我们区分了两种截然不同的情况,即消逝只能与跳跃同时发生的情况,以及消逝可以在任何时间发生的情况。第一种是晶格上捕获过程的特征,而第二种与自发死亡过程(如放射性衰变)相关。在这两种情况下,我们考虑了跳跃之间等待时间分布的三种不同形式,即指数分布、长尾分布和超慢分布。