Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742.
Proc Natl Acad Sci U S A. 1981 Jun;78(6):3287-91. doi: 10.1073/pnas.78.6.3287.
We construct a random walk on a lattice having a hierarchy of self-similar clusters built into the distribution function of allowed jumps. The random walk is a discrete analog of a Lévy flight and coincides with the Lévy flight in the continum limit. The Fourier transform of the jump distribution function is the continuous nondifferentiable function of Weierstrass. We show that, for cluster formation, it is necessary that the mean-squared displacement per jump be infinite and that the random walk be transient. We interpret our random walk as having an effective dimension higher than the spatial dimension available to the walker. The difference in dimensions is related to the fractal (Hausdorff-Besicovitch) dimension of the self-similar clusters.
我们构建了一个具有自相似簇层次结构的晶格上的随机行走,这种层次结构被构建到允许跳跃的分布函数中。随机行走是 Lévy 飞行的离散模拟,并且在连续极限下与 Lévy 飞行一致。跳跃分布函数的傅立叶变换是 Weierstrass 的连续不可微函数。我们表明,对于簇的形成,有必要使每跳的均方位移无穷大,并且随机行走是瞬态的。我们将我们的随机行走解释为具有比步行者可用的空间维度更高的有效维度。维度的差异与自相似簇的分形(Hausdorff-Besicovitch)维度有关。