Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, Minas Gerais 30123-970, Brazil and Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore.
Institute for Theoretical Physics and Astrophysics, University of Gdańsk, PL-80952, Gdańsk, Poland and National Quantum Information Centre of Gdańsk, 81-824 Sopot, Poland.
Phys Rev Lett. 2013 Dec 20;111(25):250404. doi: 10.1103/PhysRevLett.111.250404. Epub 2013 Dec 18.
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.
热力学的思想在量子信息理论的背景下被证明是富有成效的,特别是当系统的允许变换受到限制时,系统的某些状态成为有用的资源,可以用来准备以前无法达到的状态。在这个意义上,纠缠理论也许是最著名和最被理解的资源理论。在这里,我们使用量子信息理论中发展的资源理论形式来重新探讨热力学的基本问题,并表明热力学的自由能从能量守恒变换的资源理论中自然地出现。具体来说,自由能量化了当仅使用可逆能量守恒变换和固定温度的热浴时,从渐近多个量子系统副本中可以提取的有用功的量。自由能还量化了资源状态在渐近情况下可以可逆地相互转换的速率,前提是能级上的相干叠加量是亚线性的,这种情况类似于纠缠稀释所需的亚线性经典通信量。