Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Microsoft Research, Cambridge CB1 2FB, United Kingdom.
Phys Rev Lett. 2013 Dec 20;111(25):253601. doi: 10.1103/PhysRevLett.111.253601. Epub 2013 Dec 18.
Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture and molecular elements of photosynthetic reaction centers. Quantum interference of photon absorption and emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters for optimized dipolar geometries. This result opens a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.
人工实现负责光合作用复合物中极高效光子到电荷转换的生物光反应,为光伏器件的未来发展开辟了新的方向。在这里,我们基于光合作用反应中心的纳米结构和分子元件,开发了这样一种范例,并展示了一种模型光电池。分子激发态之间的偶极-偶极相互作用引起的光子吸收和发射的量子干涉,保证了在广泛的电子、热和光学参数范围内的光电流转换和发电增强,对于优化的偶极几何形状。这一结果为受生物光合作用和量子技术启发的人工光捕获器件的设计开辟了一条有前景的新途径。