Suppr超能文献

分子对背外侧前额叶皮层工作记忆回路的影响。

Molecular influences on working memory circuits in dorsolateral prefrontal cortex.

机构信息

Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

Prog Mol Biol Transl Sci. 2014;122:211-31. doi: 10.1016/B978-0-12-420170-5.00008-8.

Abstract

The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.

摘要

灵长类动物背外侧前额叶皮层 (dlPFC) 的工作记忆回路以独特的方式调节,通常与长期记忆巩固所需的分子机制相反。工作记忆是我们的“心理速写本”,是一个短暂的过程,其中短暂的、心理上的表现构成了抽象思维的基础。产生心理表现的微电路存在于 dlPFC 的深层 III 层,其中锥体细胞通过 NMDA 受体突触在棘突上相互激发,以保持信息“在脑海中”。儿茶酚胺能和胆碱能觉醒系统对这些连接的强度具有快速而灵活的影响,从而允许觉醒和认知状态之间的协调。这些调节剂可以迅速削弱连接,例如,在不可控压力下发生的情况,通过前馈钙-cAMP 信号在棘突上的突触附近打开钾 (K(+)) 通道。钙-cAMP-K(+)通道信号的较低水平在递归兴奋性回路内提供负反馈,并有助于门控输入以形成工作记忆的内容。还有明确的机制来抑制钙-cAMP 信号并增强连接,例如,棘突上的突触后α2A-肾上腺素受体。这项工作导致了α2A 激动剂胍法辛的开发,用于治疗各种 dlPFC 障碍。在精神疾病中,正常用于抑制棘突中钙-cAMP 信号的分子受到多种遗传损伤,这就解释了为什么如此多的遗传损伤会导致相同的 dlPFC 认知功能障碍表型。因此,提供心理灵活性的分子机制在认知障碍中失调时也可能带来脆弱性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验