Suppr超能文献

对TOR和JNK信号通路的联合抑制相互作用,可延长曼氏臂尾轮虫(轮虫纲)的寿命。

Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

作者信息

Snell Terry W, Johnston Rachel K, Rabeneck Brett, Zipperer Cody, Teat Stephanie

机构信息

School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.

School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.

出版信息

Exp Gerontol. 2014 Apr;52:55-69. doi: 10.1016/j.exger.2014.01.022. Epub 2014 Jan 29.

Abstract

The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent marker MitoTracker and lysosome activity using LysoTracker. Treatment of rotifers with JNK inhibitor enhanced mitochondria activity nearly 3-fold, whereas rapamycin treatment had no significant effect. Treatment of rotifers with rapamycin or JNK inhibitor reduced lysosome activity in 1, 3 and 8 day old animals, but treatment with both inhibitors did not produce any additive effect. We conclude that inhibition of TOR and JNK pathways significantly extends the lifespan of B. manjavacas. These pathways interact so that inhibition of both simultaneously acts additively to extend rotifer lifespan more than the inhibition of either alone.

摘要

TOR激酶通路在多种动物模型的衰老调节中起着核心作用。雷帕霉素靶蛋白(TOR)整合了来自生长条件、营养可用性、能量状态和生理应激的复杂信号网络,并使生物体的生长速率与资源环境相匹配。剩下的重要问题是识别与TOR相互作用的通路,并将它们表征为相加或协同作用。后生动物中最通用的应激传感器之一是Jun-N端激酶(JNK)信号通路。JNK是一种进化上保守的应激激活蛋白激酶,由一系列应激源诱导,包括紫外线照射、活性氧、DNA损伤、热和细菌抗原。JNK被认为与TOR通路相互作用,但其对TOR的影响却知之甚少。我们使用轮虫曼氏臂尾轮虫作为模型动物来探究TOR和JNK通路的调控,并探索它们之间的相互作用。在生命表和应激源挑战实验中检测了各种化学抑制剂的作用。对12种抑制剂的调查发现,雷帕霉素和JNK抑制剂这两种抑制剂显著延长了曼氏臂尾轮虫的寿命。在1 μM浓度下,暴露于雷帕霉素或JNK抑制剂使轮虫的平均寿命延长了35%,最大寿命延长了37%。同时暴露于雷帕霉素和JNK抑制剂使轮虫的平均寿命比单独使用任何一种抑制剂时延长了65%。与单独使用任何一种抑制剂相比,暴露于雷帕霉素和JNK抑制剂的组合对饥饿、紫外线和渗透应激具有更大的保护作用。研究了RNA干扰(RNAi)敲低TOR和JNK基因表达延长轮虫寿命的能力。与对照相比,RNAi敲低TOR基因使平均寿命延长了29%,敲低JNK基因使平均寿命延长了51%。除了寿命,我们使用荧光标记物MitoTracker定量线粒体活性,使用LysoTracker定量溶酶体活性。用JNK抑制剂处理轮虫使线粒体活性提高了近3倍,而雷帕霉素处理没有显著影响。用雷帕霉素或JNK抑制剂处理1日龄、3日龄和8日龄的轮虫会降低溶酶体活性,但同时用两种抑制剂处理并没有产生任何相加效应。我们得出结论,抑制TOR和JNK通路可显著延长曼氏臂尾轮虫的寿命。这些通路相互作用,因此同时抑制两者比单独抑制其中任何一个更能相加地延长轮虫寿命。

相似文献

1
Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).
Exp Gerontol. 2014 Apr;52:55-69. doi: 10.1016/j.exger.2014.01.022. Epub 2014 Jan 29.
2
Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations.
Biogerontology. 2012 Jun;13(3):261-75. doi: 10.1007/s10522-012-9371-x. Epub 2012 Jan 24.
4
Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors.
Exp Gerontol. 2014 Sep;57:47-56. doi: 10.1016/j.exger.2014.05.005. Epub 2014 May 14.
5
Repurposing FDA-approved drugs for anti-aging therapies.
Biogerontology. 2016 Nov;17(5-6):907-920. doi: 10.1007/s10522-016-9660-x. Epub 2016 Aug 2.
6
Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system.
BMC Genomics. 2017 Mar 1;18(1):217. doi: 10.1186/s12864-017-3540-x.
7
The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes.
Mar Biotechnol (NY). 2022 Mar;24(1):226-242. doi: 10.1007/s10126-022-10102-6. Epub 2022 Mar 9.
9
A mitochondrial ATP synthase subunit interacts with TOR signaling to modulate protein homeostasis and lifespan in Drosophila.
Cell Rep. 2014 Sep 25;8(6):1781-1792. doi: 10.1016/j.celrep.2014.08.022. Epub 2014 Sep 15.
10
Rotifers as experimental tools for investigating aging.
Invertebr Reprod Dev. 2015 Jan 1;59(1):5-10. doi: 10.1080/07924259.2014.925516.

引用本文的文献

1
c-Jun N-terminal kinase signaling in aging.
Front Aging Neurosci. 2024 Aug 29;16:1453710. doi: 10.3389/fnagi.2024.1453710. eCollection 2024.
2
Combinatorial interventions in aging.
Nat Aging. 2023 Oct;3(10):1187-1200. doi: 10.1038/s43587-023-00489-9. Epub 2023 Oct 2.
3
Highly efficient CRISPR-mediated gene editing in a rotifer.
PLoS Biol. 2023 Jul 21;21(7):e3001888. doi: 10.1371/journal.pbio.3001888. eCollection 2023 Jul.
5
The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes.
Mar Biotechnol (NY). 2022 Mar;24(1):226-242. doi: 10.1007/s10126-022-10102-6. Epub 2022 Mar 9.
6
Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging.
Nutr Healthy Aging. 2021 Jan 20;6(1):1-15. doi: 10.3233/NHA-200104.
8
Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers.
Biogerontology. 2018 Apr;19(2):145-157. doi: 10.1007/s10522-018-9745-9. Epub 2018 Jan 16.
10
Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system.
BMC Genomics. 2017 Mar 1;18(1):217. doi: 10.1186/s12864-017-3540-x.

本文引用的文献

1
Rotifers as models for the biology of aging.
Int Rev Hydrobiol. 2014 Mar;99(1-2):84-95. doi: 10.1002/iroh.201301707.
2
Patterns of intraspecific variability in the response to caloric restriction.
Exp Gerontol. 2014 Mar;51:28-37. doi: 10.1016/j.exger.2013.12.005. Epub 2013 Dec 31.
3
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
4
A cytoprotective perspective on longevity regulation.
Trends Cell Biol. 2013 Sep;23(9):409-20. doi: 10.1016/j.tcb.2013.04.007. Epub 2013 May 30.
5
Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (rotifera).
Cell Stress Chaperones. 2014 Jan;19(1):33-52. doi: 10.1007/s12192-013-0432-0. Epub 2013 Apr 26.
6
Touching base with PARPs: moonlighting in the repair of UV lesions and double-strand breaks.
Trends Biochem Sci. 2013 Jun;38(6):321-30. doi: 10.1016/j.tibs.2013.03.002. Epub 2013 Apr 4.
7
Nutrient signaling to mTOR and cell growth.
Trends Biochem Sci. 2013 May;38(5):233-42. doi: 10.1016/j.tibs.2013.01.004. Epub 2013 Mar 1.
9
Nutrient sensing, metabolism, and cell growth control.
Mol Cell. 2013 Feb 7;49(3):379-87. doi: 10.1016/j.molcel.2013.01.019.
10
WIKI4, a novel inhibitor of tankyrase and Wnt/ß-catenin signaling.
PLoS One. 2012;7(12):e50457. doi: 10.1371/journal.pone.0050457. Epub 2012 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验