Suppr超能文献

Membrane currents that govern smooth muscle contraction in a ctenophore.

作者信息

Bilbaut A, Hernandez-Nicaise M L, Leech C A, Meech R W

机构信息

Cytologie Expérimentale, Université de Nice, France.

出版信息

Nature. 1988 Feb 11;331(6156):533-5. doi: 10.1038/331533a0.

Abstract

Ctenophores are transparent marine organisms that swim by means of beating cilia; they are the simplest animals with individual muscle fibres. Predatory species, such as Beroe ovata, have particularly well-developed muscles and are capable of an elaborate feeding response. When Beroe contacts its prey, the mouth opens, the body shortens, the pharynx expands, the prey is engulfed and the lips then close tightly. How this sequence, which lasts 1 s, is accomplished is unclear. The muscles concerned are structurally uniform and are innervated at each end by a neuronal nerve net with no centre for coordination. Isolated muscle cells studied under voltage-clamp provide a solution to this puzzle. We find that different groups of muscle cells have different time-dependent membrane currents. Because muscle contraction depends upon calcium entry during each action potential, these different currents produce different patterns of contraction. We conclude that in a simple animal such as a ctenophore, a sophisticated set of membrane conductances can compensate for the absence of an elaborate system of effectors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验