Suppr超能文献

Membrane currents that govern smooth muscle contraction in a ctenophore.

作者信息

Bilbaut A, Hernandez-Nicaise M L, Leech C A, Meech R W

机构信息

Cytologie Expérimentale, Université de Nice, France.

出版信息

Nature. 1988 Feb 11;331(6156):533-5. doi: 10.1038/331533a0.

Abstract

Ctenophores are transparent marine organisms that swim by means of beating cilia; they are the simplest animals with individual muscle fibres. Predatory species, such as Beroe ovata, have particularly well-developed muscles and are capable of an elaborate feeding response. When Beroe contacts its prey, the mouth opens, the body shortens, the pharynx expands, the prey is engulfed and the lips then close tightly. How this sequence, which lasts 1 s, is accomplished is unclear. The muscles concerned are structurally uniform and are innervated at each end by a neuronal nerve net with no centre for coordination. Isolated muscle cells studied under voltage-clamp provide a solution to this puzzle. We find that different groups of muscle cells have different time-dependent membrane currents. Because muscle contraction depends upon calcium entry during each action potential, these different currents produce different patterns of contraction. We conclude that in a simple animal such as a ctenophore, a sophisticated set of membrane conductances can compensate for the absence of an elaborate system of effectors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验