Department of Microbiology, Pusan National University, Busan, Republic of Korea.
Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea.
Neurotoxicology. 2014 Mar;41:102-11. doi: 10.1016/j.neuro.2014.01.005. Epub 2014 Jan 30.
Glutamate toxicity increases the formation of reactive oxygen species (ROS) and intracellular calcium levels, resulting in neuronal dysfunction, neurodegenerative disorders, and death. Cordycepin is a derivative of the nucleoside adenosine, and is believed to exert neuroprotective effects against glutamate-induced oxidative toxicity in HT22 neuronal cells. Excessive glutamate induces oxidative and endoplasmic reticulum (ER) stress, gradually increasing ER-related pro-apoptotic transcription factor C/EBP homologous protein (CHOP) expression, and eventually up-regulating expression of the pro-apoptotic factor Bax. Cordycepin inhibits CHOP and Bax expressions, as well as p-ERK, p-JNK, and p-p38, all of which are involved in oxidative or ER stress-induced apoptosis. In addition, the increased production of ROS from excessive glutamate leads to elevation of mitochondrial membrane potential (MMP), a hallmark of mitochondrial dysfunction. Cordycepin retains MMP and reduces the elevated levels of ROS and Ca(2+) induced by glutamate. Caspases are crucial mediators involved in mitochondrial apoptosis, and while glutamate disrupts mitochondrial function, it does not change expression levels of caspase 3 and caspase 9. Similarly, cordycepin has no effect on caspase 3 and caspase 9 expressions; however, it decreases the expression of ER stress-specific caspase 12, which plays a key role in the initiation of ER stress-induced apoptosis. Finally, we found that the anti-apoptotic effects of cordycepin are partially dependent on activation of the adenosine A1 receptor, whereas an antagonist selectively attenuated the neuroprotective effects of cordycepin. Collectively, these results suggest that cordycepin could be a potential future therapeutic agent for neuronal disorders.
谷氨酸毒性会增加活性氧(ROS)和细胞内钙水平的形成,导致神经元功能障碍、神经退行性疾病和死亡。虫草素是核苷腺苷的衍生物,据信它对 HT22 神经元细胞中谷氨酸诱导的氧化毒性具有神经保护作用。过量的谷氨酸会引起氧化和内质网(ER)应激,逐渐增加 ER 相关促凋亡转录因子 C/EBP 同源蛋白(CHOP)的表达,最终上调促凋亡因子 Bax 的表达。虫草素抑制 CHOP 和 Bax 的表达,以及 p-ERK、p-JNK 和 p-p38 的表达,这些都参与了氧化或 ER 应激诱导的细胞凋亡。此外,过量谷氨酸产生的 ROS 增加会导致线粒体膜电位(MMP)升高,这是线粒体功能障碍的标志。虫草素保留 MMP 并降低谷氨酸引起的 ROS 和 Ca(2+)升高水平。半胱天冬酶是参与线粒体凋亡的关键介质,虽然谷氨酸会破坏线粒体功能,但不会改变 caspase 3 和 caspase 9 的表达水平。同样,虫草素对 caspase 3 和 caspase 9 的表达没有影响;然而,它降低了 ER 应激特异性半胱天冬酶 12 的表达,后者在 ER 应激诱导的凋亡起始中发挥关键作用。最后,我们发现虫草素的抗凋亡作用部分依赖于腺苷 A1 受体的激活,而拮抗剂选择性减弱了虫草素的神经保护作用。总之,这些结果表明虫草素可能是治疗神经元疾病的潜在未来治疗剂。