Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany.
Environ Sci Technol. 2014;48(5):2934-41. doi: 10.1021/es404992g. Epub 2014 Feb 18.
The exploitation of a lag phase in nitrate production after anoxic periods is a promising approach to suppress nitrite oxidizing bacteria, which is crucial for implementation of the combined partial nitritation-anammox process. An in-depth study of the actual lag phase in nitrate production after short anoxic periods was performed with varied temperatures and air flow rates. In monitored batch experiments, biomass from four different full-scale partial nitritation-anammox plants was subjected to anoxic periods of 5-60 min. Ammonium and the nitrite that was produced were present to reproduce reactor conditions and enable ammonium and nitrite oxidation at the same time. The lag phase observed in nitrite oxidation exceeded the lag phase in ammonium oxidation after anoxic periods of more than 15-20 min. Lower temperatures slowed down the conversion rates but did not affect the lag phases. The operational oxygen concentration in the originating full scale plants strongly affected the length of the lag phase, which could be attributed to different species of Nitrospira spp. detected by DGGE and sequencing analysis.
在缺氧期后利用硝酸盐生产的滞后阶段是抑制亚硝酸盐氧化菌的一种很有前途的方法,这对于实施组合部分亚硝化-厌氧氨氧化工艺至关重要。本研究通过不同的温度和空气流速对短缺氧期后硝酸盐生产的实际滞后阶段进行了深入研究。在监测的批量实验中,来自四个不同的全规模部分亚硝化-厌氧氨氧化工厂的生物量经历了 5-60 分钟的缺氧期。存在氨和生成的亚硝酸盐是为了重现反应器条件,并使氨和亚硝酸盐同时氧化。缺氧期超过 15-20 分钟后,观察到的亚硝酸盐氧化滞后阶段超过了氨氧化滞后阶段。较低的温度会降低转化率,但不会影响滞后阶段。原始全规模工厂中的操作氧浓度强烈影响滞后阶段的长度,这可归因于 DGGE 和测序分析检测到的不同 Nitrospira spp. 种。