Suppr超能文献

将基因组解析宏基因组学与基于特征的过程建模相结合,以确定活性污泥中不同硝化群落的生物动力学。

Integrating Genome-Resolved Metagenomics with Trait-Based Process Modeling to Determine Biokinetics of Distinct Nitrifying Communities within Activated Sludge.

机构信息

Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

出版信息

Environ Sci Technol. 2022 Aug 16;56(16):11670-11682. doi: 10.1021/acs.est.2c02081. Epub 2022 Aug 5.

Abstract

Conventional bioprocess models for wastewater treatment are based on aggregated bulk biomass concentrations and do not incorporate microbial physiological diversity. Such a broad aggregation of microbial functional groups can fail to predict ecosystem dynamics when high levels of physiological diversity exist within trophic guilds. For instance, functional diversity among nitrite-oxidizing bacteria (NOB) can obfuscate engineering strategies for their out-selection in activated sludge (AS), which is desirable to promote energy-efficient nitrogen removal. Here, we hypothesized that different NOB populations within AS can have different physiological traits that drive process performance, which we tested by estimating biokinetic growth parameters using a combination of highly replicated respirometry, genome-resolved metagenomics, and process modeling. A lab-scale AS reactor subjected to a selective pressure for over 90 days experienced resilience of NOB activity. We recovered three coexisting population genomes belonging to two sublineages, which exhibited distinct growth strategies and underwent a compositional shift following the selective pressure. A trait-based process model calibrated at the NOB genus level better predicted nitrite accumulation than a conventional process model calibrated at the NOB guild level. This work demonstrates that trait-based modeling can be leveraged to improve our prediction, control, and design of functionally diverse microbiomes driving key environmental biotechnologies.

摘要

传统的废水处理生物工艺模型基于聚集的批量生物量浓度,不包含微生物生理多样性。当营养阶层内存在高水平的生理多样性时,这种广泛的微生物功能群聚集可能无法预测生态系统动态。例如,亚硝酸盐氧化菌 (NOB) 之间的功能多样性可能会使促进节能氮去除的活性污泥 (AS) 中其选择外排的工程策略变得复杂。在这里,我们假设 AS 中的不同 NOB 种群可能具有不同的生理特征,从而影响工艺性能,我们通过结合高重复呼吸计、基因组解析宏基因组学和过程建模来估计生物动力学生长参数来验证这一假设。一个经过 90 多天选择性压力的实验室规模的 AS 反应器经历了 NOB 活性的恢复。我们回收了属于两个亚系的三个共存种群基因组,它们表现出不同的生长策略,并在选择性压力后发生了组成变化。在 NOB 属水平上进行校准的基于特征的过程模型比在 NOB 等级水平上进行校准的常规过程模型更好地预测了亚硝酸盐积累。这项工作表明,基于特征的建模可以被利用来提高我们对关键环境生物技术中驱动功能多样性微生物组的预测、控制和设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38aa/9387530/adf781734d03/es2c02081_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验