Suppr超能文献

犬类声带覆盖层的杨氏模量。

Young's modulus of canine vocal fold cover layers.

作者信息

Chhetri Dinesh K, Rafizadeh Sassan

机构信息

Laryngeal Physiology Laboratory, Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California.

Laryngeal Physiology Laboratory, Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California.

出版信息

J Voice. 2014 Jul;28(4):406-10. doi: 10.1016/j.jvoice.2013.12.003. Epub 2014 Feb 1.

Abstract

OBJECTIVES

The objective of this study was to measure the elastic modulus (Young's modulus) of canine vocal fold cover layers.

STUDY DESIGN

Basic science study.

METHODS

Cover layers from vocal folds of eight canine larynges were dissected. Cover layer samples from the mid-membranous, medial vocal fold surface area were used to measure material stiffness using a previously validated indentation method. Cover layers from two human larynges were also measured as control references. Superior and inferior medial cover layers were measured separately. A total of 15 superior medial surface and 17 inferior medial surface specimens from the canine and two and four specimens, respectively, from the human were tested.

RESULTS

In the canine larynges, the mean Young's modulus of the superior medial surface was 4.2 kPa (range, 3.0-5.4 kPa; standard deviation [SD], 0.6 kPa) and of the inferior medial surface was 6.8 kPa (range, 5.4-8.5 kPa; SD, 0.8 kPa). Measurements on human cover samples were 5.0 kPa (range, 4.7-5.4 kPa; SD, 0.5 kPa) and 7.0 kPa (range, 6.7-7.3 kPa; SD, 0.3 kPa) for the superior medial and inferior medial surface, respectively. Human measurements were similar to the previously validated measurements. There was no difference between the stiffness measurements in the human and canine cover layer samples (P>0.05).

CONCLUSIONS

The elastic stiffness (Young's modulus) of the canine and human vocal fold cover layers is similar. Findings support the use of canine larynx as an externally valid model to study voice production.

摘要

目的

本研究的目的是测量犬类声带覆盖层的弹性模量(杨氏模量)。

研究设计

基础科学研究。

方法

解剖八只犬类喉部的声带覆盖层。使用先前验证的压痕方法,从声带膜性中段、内侧表面区域获取覆盖层样本,以测量材料硬度。还测量了两个人类喉部的覆盖层作为对照参考。分别测量上、下内侧覆盖层。共测试了15个犬类上内侧表面样本和17个下内侧表面样本,以及两个人类的2个和4个样本。

结果

在犬类喉部,上内侧表面的平均杨氏模量为4.2 kPa(范围3.0 - 5.4 kPa;标准差[SD]为0.6 kPa),下内侧表面为6.8 kPa(范围5.4 - 8.5 kPa;SD为0.8 kPa)。人类覆盖层样本上内侧和下内侧表面的测量值分别为5.0 kPa(范围4.7 - 5.4 kPa;SD为0.5 kPa)和7.0 kPa(范围6.7 - 7.3 kPa;SD为0.3 kPa)。人类测量值与先前验证的测量值相似。人类和犬类覆盖层样本的硬度测量值之间无差异(P>0.05)。

结论

犬类和人类声带覆盖层的弹性硬度(杨氏模量)相似。研究结果支持将犬类喉部作为研究发声的外部有效模型。

相似文献

1
Young's modulus of canine vocal fold cover layers.
J Voice. 2014 Jul;28(4):406-10. doi: 10.1016/j.jvoice.2013.12.003. Epub 2014 Feb 1.
2
Measurement of Young's modulus of vocal folds by indentation.
J Voice. 2011 Jan;25(1):1-7. doi: 10.1016/j.jvoice.2009.09.005. Epub 2010 Feb 19.
3
Characterization of the vocal fold vertical stiffness in a canine model.
J Voice. 2014 May;28(3):297-304. doi: 10.1016/j.jvoice.2013.11.001. Epub 2014 Feb 1.
4
Automated Indentation Mapping of Vocal Fold Structure and Cover Properties Across Species.
Laryngoscope. 2019 Jan;129(1):E26-E31. doi: 10.1002/lary.27341. Epub 2018 Nov 8.
5
Rheometric properties of canine vocal fold tissues: variation with anatomic location.
Auris Nasus Larynx. 2011 Jun;38(3):367-72. doi: 10.1016/j.anl.2010.09.006. Epub 2010 Oct 28.
6
The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
J Voice. 2018 Jul;32(4):396-402. doi: 10.1016/j.jvoice.2017.06.013. Epub 2017 Aug 18.
7
Measurement of Young's modulus in the in vivo human vocal folds.
Ann Otol Rhinol Laryngol. 1993 Aug;102(8 Pt 1):584-91. doi: 10.1177/000348949310200803.
10
A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
Laryngoscope. 2005 Sep;115(9):1646-54. doi: 10.1097/01.mlg.0000175068.25914.61.

引用本文的文献

1
5
Comparison of Aerodynamic and Elastic Properties in Tissue and Synthetic Models of Vocal Fold Vibrations.
Bioengineering (Basel). 2024 Aug 15;11(8):834. doi: 10.3390/bioengineering11080834.
6
Acoustics and aerodynamic effects following glottal and infraglottal medialization in an excised larynx model.
Eur Arch Otorhinolaryngol. 2024 May;281(5):2523-2529. doi: 10.1007/s00405-024-08519-x. Epub 2024 Feb 29.
7
Control of Pre-phonatory Glottal Shape by Intrinsic Laryngeal Muscles.
Laryngoscope. 2023 Jul;133(7):1690-1697. doi: 10.1002/lary.30403. Epub 2022 Sep 21.
8
In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review.
Polymers (Basel). 2021 Aug 6;13(16):2619. doi: 10.3390/polym13162619.
9
Computational Modeling of Voice Production Using Excised Canine Larynx.
J Biomech Eng. 2022 Feb 1;144(2). doi: 10.1115/1.4052226.
10
Effects of Laryngeal Vibratory Asymmetry and Neuromuscular Compensation on Voice Quality.
Laryngoscope. 2022 Jan;132(1):130-134. doi: 10.1002/lary.29724. Epub 2021 Jul 3.

本文引用的文献

2
Neuromuscular induced phonation in a human ex vivo perfused larynx preparation.
J Acoust Soc Am. 2013 Feb;133(2):EL114-7. doi: 10.1121/1.4776776.
3
The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
J Voice. 2012 Nov;26(6):698-705. doi: 10.1016/j.jvoice.2011.09.012. Epub 2012 May 11.
4
Neuromuscular control of fundamental frequency and glottal posture at phonation onset.
J Acoust Soc Am. 2012 Feb;131(2):1401-12. doi: 10.1121/1.3672686.
5
Interspecies comparison of mucosal wave properties using high-speed digital imaging.
Laryngoscope. 2010 Jun;120(6):1188-94. doi: 10.1002/lary.20884.
6
Graded activation of the intrinsic laryngeal muscles for vocal fold posturing.
J Acoust Soc Am. 2010 Apr;127(4):EL127-33. doi: 10.1121/1.3310274.
7
Measurement of Young's modulus of vocal folds by indentation.
J Voice. 2011 Jan;25(1):1-7. doi: 10.1016/j.jvoice.2009.09.005. Epub 2010 Feb 19.
8
Current understanding and review of the literature: vocal fold scarring.
J Voice. 2006 Mar;20(1):110-20. doi: 10.1016/j.jvoice.2004.12.005. Epub 2005 Jun 20.
9
Normal vibration frequencies of the vocal ligament.
J Acoust Soc Am. 2004 May;115(5 Pt 1):2264-9. doi: 10.1121/1.1698832.
10
Comparison of human, canine, and ovine laryngeal dimensions.
Ann Otol Rhinol Laryngol. 2004 Jan;113(1):60-8. doi: 10.1177/000348940411300114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验