Suppr超能文献

神经嵴和基板在颅感觉系统发育过程中的相互作用。

Neural crest and placode interaction during the development of the cranial sensory system.

机构信息

Department of Developmental and Stem Cell Biology, Insitut Pasteur, France.

Department of Cell and Developmental Biology, University College London, London, UK.

出版信息

Dev Biol. 2014 May 1;389(1):28-38. doi: 10.1016/j.ydbio.2014.01.021. Epub 2014 Jan 31.

Abstract

In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head.

摘要

在脊椎动物头部,感觉神经系统的外围成分来自两个胚胎细胞群,即神经嵴和颅部感觉基板。这两个细胞群都在神经板的边界附近彼此相邻产生:神经嵴前体细胞毗邻未来的中枢神经系统,而基板起源于稍靠外侧的一个共同基板前区。在头部形态发生过程中,复杂的事件将这些前体细胞组织成功能性感觉结构,这就提出了它们的发育是如何协调的问题。在这里,我们回顾了证据,证明神经嵴和基板细胞在整个发育过程中保持接近,并以反复的相互方式相互作用。我们还回顾了关于神经嵴和基板对耳和嗅觉系统相对贡献的最新争议。我们提出,神经嵴和基板之间的一系列相互作用驱动着协调的形态发生,从而在头部内产生功能性感觉系统。

相似文献

1
Neural crest and placode interaction during the development of the cranial sensory system.
Dev Biol. 2014 May 1;389(1):28-38. doi: 10.1016/j.ydbio.2014.01.021. Epub 2014 Jan 31.
2
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head.
Curr Top Dev Biol. 2020;139:127-167. doi: 10.1016/bs.ctdb.2020.04.002. Epub 2020 May 12.
3
Making a head: Neural crest and ectodermal placodes in cranial sensory development.
Semin Cell Dev Biol. 2023 Mar 30;138:15-27. doi: 10.1016/j.semcdb.2022.06.009. Epub 2022 Jun 25.
4
A new model for olfactory placode development.
Brain Behav Evol. 2004;64(3):126-40. doi: 10.1159/000079742.
5
A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons.
Dev Biol. 2016 Jul 15;415(2):228-241. doi: 10.1016/j.ydbio.2016.03.015. Epub 2016 Mar 15.
6
Establishing the pre-placodal region and breaking it into placodes with distinct identities.
Dev Biol. 2014 May 1;389(1):13-27. doi: 10.1016/j.ydbio.2014.02.011. Epub 2014 Feb 24.
7
Migration of neuroblasts from neurogenic placodes.
Dev Neurosci. 2008;30(1-3):33-5. doi: 10.1159/000109849.
8
Setting appropriate boundaries: fate, patterning and competence at the neural plate border.
Dev Biol. 2014 May 1;389(1):2-12. doi: 10.1016/j.ydbio.2013.11.027. Epub 2013 Dec 7.
9
Transcriptional regulation of cranial sensory placode development.
Curr Top Dev Biol. 2015;111:301-50. doi: 10.1016/bs.ctdb.2014.11.009. Epub 2015 Jan 22.
10
Specification of sensory placode progenitors: signals and transcription factor networks.
Int J Dev Biol. 2018;62(1-2-3):195-205. doi: 10.1387/ijdb.170298as.

引用本文的文献

1
Development of the zebrafish anterior lateral line system is influenced by underlying cranial neural crest.
Dev Biol. 2025 Sep;525:102-121. doi: 10.1016/j.ydbio.2025.05.025. Epub 2025 May 29.
3
The transcriptional landscape of the developing chick trigeminal ganglion.
Dev Biol. 2025 Apr;520:108-116. doi: 10.1016/j.ydbio.2024.12.013. Epub 2024 Dec 22.
4
6
StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases.
Genome Biol. 2024 Aug 16;25(1):224. doi: 10.1186/s13059-024-03347-y.
8
Tlx3 mediates neuronal differentiation and proper condensation of the developing trigeminal ganglion.
Dev Biol. 2024 Nov;515:79-91. doi: 10.1016/j.ydbio.2024.07.005. Epub 2024 Jul 15.
9
Modern In Vitro Techniques for Modeling Hearing Loss.
Bioengineering (Basel). 2024 Apr 26;11(5):425. doi: 10.3390/bioengineering11050425.
10

本文引用的文献

1
Cochleovestibular nerve development is integrated with migratory neural crest cells.
Dev Biol. 2014 Jan 15;385(2):200-10. doi: 10.1016/j.ydbio.2013.11.009. Epub 2013 Nov 16.
2
Cranial neural crest cells form corridors prefiguring sensory neuroblast migration.
Development. 2013 Sep;140(17):3595-600. doi: 10.1242/dev.091033.
4
Chase-and-run between adjacent cell populations promotes directional collective migration.
Nat Cell Biol. 2013 Jul;15(7):763-72. doi: 10.1038/ncb2772. Epub 2013 Jun 16.
5
The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling.
Dev Biol. 2013 Jul 15;379(2):229-34. doi: 10.1016/j.ydbio.2013.04.026. Epub 2013 May 3.
6
Shedding new light on the origins of olfactory neurons.
Elife. 2013 Mar 26;2:e00648. doi: 10.7554/eLife.00648.
8
9
Neural crest-derived horizontal basal cells as tissue stem cells in the adult olfactory epithelium.
Neurosci Res. 2013 Feb;75(2):112-20. doi: 10.1016/j.neures.2012.11.005. Epub 2012 Dec 8.
10
Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors.
Hear Res. 2013 Mar;297:3-12. doi: 10.1016/j.heares.2012.11.018. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验