Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France.
PLoS Biol. 2014 Jan 28;12(1):e1001776. doi: 10.1371/journal.pbio.1001776. eCollection 2014 Jan.
Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.
组氨酸激酶 (HKs) 是二聚体受体,参与原核生物对环境变化的大多数适应性反应。虽然已经证实刺激感应会触发许多 HK 的自动磷酸化,但对于输入信号如何通过 HAMP 结构域传播以控制催化反应过程中含组氨酸和 ATP 结合结构域之间的瞬时相互作用知之甚少。在这里,我们报告了参与大肠杆菌应对 envelope stress 的典型 HK CpxA 的完整细胞质区域的晶体结构。结构集合,包括 Michaelis 复合物,揭示了 HK 的激活是一个高度动态的过程,其中 HAMP 调节中央 HK α-螺旋的分段流动性,以促进强构象和动力学不对称性,这是激酶活性状态的特征。基于我们的结构和生化数据的力学模型提供了对 HAMP 介导的信号转导、自动磷酸化反应机制以及 HK 激酶/磷酸酶功能状态的对称依赖性控制的深入了解。