Suppr超能文献

EFEMP1在胶质母细胞瘤中诱导γ-分泌酶/Notch介导的替莫唑胺耐药。

EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma.

作者信息

Hiddingh Lotte, Tannous Bakhos A, Teng Jian, Tops Bas, Jeuken Judith, Hulleman Esther, Boots-Sprenger Sandra H, Vandertop W Peter, Noske David P, Kaspers Gertjan J L, Wesseling Pieter, Wurdinger Thomas

机构信息

Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Oncotarget. 2014 Jan 30;5(2):363-74. doi: 10.18632/oncotarget.1620.

Abstract

Glioblastoma is the most common malignant primary brain tumor. Temozolomide (TMZ) is the standard chemotherapeutic agent for this disease. However, intrinsic and acquired TMZ-resistance represents a major obstacle for this therapy. In order to identify factors involved in TMZ-resistance, we engineered different TMZ-resistant glioblastoma cell lines. Gene expression analysis demonstrated that EFEMP1, an extracellular matrix protein, is associated with TMZ-resistant phenotype. Silencing of EFEMP1 in glioblastoma cells resulted in decreased cell survival following TMZ treatment, whereas overexpression caused TMZ-resistance. EFEMP1 acts via multiple signaling pathways, including γ-secretase-mediated activation of the Notch pathway. We show that inhibition of γ-secretase by RO4929097 causes at least partial sensitization of glioblastoma cells to temozolomide in vitro and in vivo. In addition, we show that EFEMP1 expression levels correlate with survival in TMZ-treated glioblastoma patients. Altogether our results suggest EFEMP1 as a potential therapeutic target to overcome TMZ-resistance in glioblastoma.

摘要

胶质母细胞瘤是最常见的原发性恶性脑肿瘤。替莫唑胺(TMZ)是治疗该疾病的标准化疗药物。然而,原发性和获得性替莫唑胺耐药是这种治疗方法的主要障碍。为了确定与替莫唑胺耐药相关的因素,我们构建了不同的替莫唑胺耐药胶质母细胞瘤细胞系。基因表达分析表明,细胞外基质蛋白EFEMP1与替莫唑胺耐药表型相关。在胶质母细胞瘤细胞中敲低EFEMP1会导致替莫唑胺处理后细胞存活率降低,而过表达则会导致替莫唑胺耐药。EFEMP1通过多种信号通路发挥作用,包括γ-分泌酶介导的Notch通路激活。我们发现,RO4929097抑制γ-分泌酶可使胶质母细胞瘤细胞在体外和体内至少部分对替莫唑胺敏感。此外,我们还表明,EFEMP1表达水平与接受替莫唑胺治疗的胶质母细胞瘤患者的生存率相关。总之,我们的结果表明EFEMP1是克服胶质母细胞瘤替莫唑胺耐药的潜在治疗靶点。

相似文献

1
EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma.
Oncotarget. 2014 Jan 30;5(2):363-74. doi: 10.18632/oncotarget.1620.
3
The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma.
Cell Cycle. 2015;14(21):3418-29. doi: 10.1080/15384101.2015.1090063.
4
5
Long Non-Coding RNA MALAT1 Decreases the Sensitivity of Resistant Glioblastoma Cell Lines to Temozolomide.
Cell Physiol Biochem. 2017;42(3):1192-1201. doi: 10.1159/000478917. Epub 2017 Jul 3.
7
Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells.
Cancer Lett. 2015 Oct 10;367(1):69-75. doi: 10.1016/j.canlet.2015.07.013. Epub 2015 Jul 21.
8
MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma.
Oncotarget. 2016 Nov 29;7(48):79584-79595. doi: 10.18632/oncotarget.12861.

引用本文的文献

2
Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets.
CNS Neurol Disord Drug Targets. 2024;23(10):1203-1216. doi: 10.2174/0118715273277458231213063147.
4
A bibliometric and visualization-based analysis of temozolomide research hotspots and frontier evolution.
Front Oncol. 2022 Nov 15;12:905868. doi: 10.3389/fonc.2022.905868. eCollection 2022.
5
The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling.
Front Oncol. 2022 Oct 11;12:1014749. doi: 10.3389/fonc.2022.1014749. eCollection 2022.
6
Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer.
Int J Mol Sci. 2022 Apr 21;23(9):4602. doi: 10.3390/ijms23094602.
7
NOTCH-Induced MDSC Recruitment after oHSV Virotherapy in CNS Cancer Models Modulates Antitumor Immunotherapy.
Clin Cancer Res. 2022 Apr 1;28(7):1460-1473. doi: 10.1158/1078-0432.CCR-21-2347.
8
Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy.
Front Oncol. 2021 Jul 8;11:701291. doi: 10.3389/fonc.2021.701291. eCollection 2021.
9
Molecular Mechanisms of Treatment Resistance in Glioblastoma.
Int J Mol Sci. 2020 Dec 31;22(1):351. doi: 10.3390/ijms22010351.
10
Toosendanin Suppresses Glioma Progression Property and Induces Apoptosis by Regulating miR-608/Notch Axis.
Cancer Manag Res. 2020 May 13;12:3419-3431. doi: 10.2147/CMAR.S240268. eCollection 2020.

本文引用的文献

2
Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade.
Clin Cancer Res. 2013 Jun 15;19(12):3224-33. doi: 10.1158/1078-0432.CCR-12-2119. Epub 2013 Apr 29.
4
Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma.
N Engl J Med. 2012 Oct 11;367(15):1417-27. doi: 10.1056/NEJMoa1115050.
6
Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling.
Cancer Res. 2012 Aug 1;72(15):3873-85. doi: 10.1158/0008-5472.CAN-12-1060. Epub 2012 Jun 4.
7
Predictive impact of MGMT promoter methylation in glioblastoma of the elderly.
Int J Cancer. 2012 Sep 15;131(6):1342-50. doi: 10.1002/ijc.27385. Epub 2012 Jan 11.
8
Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells.
Neuro Oncol. 2012 Feb;14(2):132-44. doi: 10.1093/neuonc/nor195. Epub 2011 Nov 7.
10
Blood platelets contain tumor-derived RNA biomarkers.
Blood. 2011 Sep 29;118(13):3680-3. doi: 10.1182/blood-2011-03-344408. Epub 2011 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验