Suppr超能文献

药用真菌灵芝中丰富且具有选择性的RNA编辑事件。

Abundant and selective RNA-editing events in the medicinal mushroom Ganoderma lucidum.

作者信息

Zhu Yingjie, Luo Hongmei, Zhang Xin, Song Jingyuan, Sun Chao, Ji Aijia, Xu Jiang, Chen Shilin

机构信息

The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.

出版信息

Genetics. 2014 Apr;196(4):1047-57. doi: 10.1534/genetics.114.161414. Epub 2014 Feb 4.

Abstract

RNA editing is a widespread, post-transcriptional molecular phenomenon that diversifies hereditary information across various organisms. However, little is known about genome-scale RNA editing in fungi. In this study, we screened for fungal RNA editing sites at the genomic level in Ganoderma lucidum, a valuable medicinal fungus. On the basis of our pipeline that predicted the editing sites from genomic and transcriptomic data, a total of 8906 possible RNA-editing sites were identified within the G. lucidum genome, including the exon and intron sequences and the 5'-/3'-untranslated regions of 2991 genes and the intergenic regions. The major editing types included C-to-U, A-to-G, G-to-A, and U-to-C conversions. Four putative RNA-editing enzymes were identified, including three adenosine deaminases acting on transfer RNA and a deoxycytidylate deaminase. The genes containing RNA-editing sites were functionally classified by the Kyoto Encyclopedia of Genes and Genomes enrichment and gene ontology analysis. The key functional groupings enriched for RNA-editing sites included laccase genes involved in lignin degradation, key enzymes involved in triterpenoid biosynthesis, and transcription factors. A total of 97 putative editing sites were randomly selected and validated by using PCR and Sanger sequencing. We presented an accurate and large-scale identification of RNA-editing events in G. lucidum, providing global and quantitative cataloging of RNA editing in the fungal genome. This study will shed light on the role of transcriptional plasticity in the growth and development of G. lucidum, as well as its adaptation to the environment and the regulation of valuable secondary metabolite pathways.

摘要

RNA编辑是一种广泛存在的转录后分子现象,它使各种生物体中的遗传信息多样化。然而,对于真菌中基因组规模的RNA编辑知之甚少。在本研究中,我们在珍贵的药用真菌灵芝中,从基因组水平筛选真菌RNA编辑位点。基于我们从基因组和转录组数据预测编辑位点的流程,在灵芝基因组中总共鉴定出8906个可能的RNA编辑位点,包括2991个基因的外显子和内含子序列以及5'-/3'-非翻译区和基因间区域。主要的编辑类型包括C到U、A到G、G到A和U到C的转换。鉴定出四种推定的RNA编辑酶,包括三种作用于转运RNA的腺苷脱氨酶和一种脱氧胞苷酸脱氨酶。通过京都基因与基因组百科全书富集和基因本体分析对含有RNA编辑位点的基因进行功能分类。富含RNA编辑位点的关键功能分组包括参与木质素降解的漆酶基因、参与三萜生物合成的关键酶和转录因子。总共随机选择了97个推定的编辑位点,并通过PCR和桑格测序进行验证。我们对灵芝中的RNA编辑事件进行了准确且大规模的鉴定,提供了真菌基因组中RNA编辑的全局和定量编目。这项研究将阐明转录可塑性在灵芝生长发育中的作用,以及其对环境的适应性和对有价值的次生代谢途径的调控。

相似文献

1
Abundant and selective RNA-editing events in the medicinal mushroom Ganoderma lucidum.
Genetics. 2014 Apr;196(4):1047-57. doi: 10.1534/genetics.114.161414. Epub 2014 Feb 4.
2
Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome.
PLoS One. 2012;7(8):e44031. doi: 10.1371/journal.pone.0044031. Epub 2012 Aug 27.
3
Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum.
PLoS One. 2014 Jun 16;9(6):e99442. doi: 10.1371/journal.pone.0099442. eCollection 2014.
4
Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis.
Fungal Genet Biol. 2020 Mar;136:103313. doi: 10.1016/j.fgb.2019.103313. Epub 2019 Nov 18.
5
Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum.
PLoS One. 2013 Aug 26;8(8):e72038. doi: 10.1371/journal.pone.0072038. eCollection 2013.
6
Genome sequence of the model medicinal mushroom Ganoderma lucidum.
Nat Commun. 2012 Jun 26;3:913. doi: 10.1038/ncomms1923.
7
Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum.
Gene. 2013 Jan 10;512(2):331-6. doi: 10.1016/j.gene.2012.09.127. Epub 2012 Oct 13.
10
Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.
Enzyme Microb Technol. 2013 Dec 10;53(6-7):378-85. doi: 10.1016/j.enzmictec.2013.08.003. Epub 2013 Aug 28.

引用本文的文献

3
Functions and mechanisms of A-to-I RNA editing in filamentous ascomycetes.
PLoS Pathog. 2024 Jun 6;20(6):e1012238. doi: 10.1371/journal.ppat.1012238. eCollection 2024 Jun.
4
RNA-editing in Basidiomycota, revisited.
ISME Commun. 2021 Dec 1;1(1):70. doi: 10.1038/s43705-021-00037-9.
6
Lessons on fruiting body morphogenesis from genomes and transcriptomes of .
Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31.
7
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective.
Microb Cell Fact. 2023 Jan 16;22(1):11. doi: 10.1186/s12934-022-02013-x.
8
Blue Light-Dependent Pre-mRNA Splicing Controls Pigment Biosynthesis in the Mushroom .
Microbiol Spectr. 2022 Oct 26;10(5):e0106522. doi: 10.1128/spectrum.01065-22. Epub 2022 Sep 12.
10
An integrated DNA and RNA variant detector identifies a highly conserved three base exon in the kinase locus.
RNA Biol. 2021 Dec;18(12):2556-2575. doi: 10.1080/15476286.2021.1932345. Epub 2021 Jun 30.

本文引用的文献

1
Limited RNA editing in exons of mouse liver and adipose.
Genetics. 2013 Apr;193(4):1107-15. doi: 10.1534/genetics.112.149054. Epub 2013 Feb 14.
2
Identifying RNA editing sites using RNA sequencing data alone.
Nat Methods. 2013 Feb;10(2):128-32. doi: 10.1038/nmeth.2330. Epub 2013 Jan 6.
3
RNA editing in the human ENCODE RNA-seq data.
Genome Res. 2012 Sep;22(9):1626-33. doi: 10.1101/gr.134957.111.
4
Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome.
PLoS One. 2012;7(8):e44031. doi: 10.1371/journal.pone.0044031. Epub 2012 Aug 27.
5
Genome sequence of the model medicinal mushroom Ganoderma lucidum.
Nat Commun. 2012 Jun 26;3:913. doi: 10.1038/ncomms1923.
6
Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome.
Nat Biotechnol. 2012 Feb 12;30(3):253-60. doi: 10.1038/nbt.2122.
7
RNA editing in plant organelles. Why make it easy?
Biochemistry (Mosc). 2011 Aug;76(8):924-31. doi: 10.1134/S0006297911080086.
8
Accurate identification of A-to-I RNA editing in human by transcriptome sequencing.
Genome Res. 2012 Jan;22(1):142-50. doi: 10.1101/gr.124107.111. Epub 2011 Sep 29.
9
KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22. doi: 10.1093/nar/gkr483.
10
The PPR-DYW proteins are required for RNA editing of rps14, cox1 and nad5 transcripts in Physcomitrella patens mitochondria.
FEBS Lett. 2011 Jul 21;585(14):2367-71. doi: 10.1016/j.febslet.2011.06.009. Epub 2011 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验