Klein Teresa, Proppert Sven, Sauer Markus
Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany,
Histochem Cell Biol. 2014 Jun;141(6):561-75. doi: 10.1007/s00418-014-1184-3. Epub 2014 Feb 5.
Super-resolution imaging by single-molecule localization (localization microscopy) provides the ability to unravel the structural organization of cells and the composition of biomolecular assemblies at a spatial resolution that is well below the diffraction limit approaching virtually molecular resolution. Constant improvements in fluorescent probes, efficient and specific labeling techniques as well as refined data analysis and interpretation strategies further improved localization microscopy. Today, it allows us to interrogate how the distribution and stoichiometry of interacting proteins in subcellular compartments and molecular machines accomplishes complex interconnected cellular processes. Thus, it exhibits potential to address fundamental questions of cell and developmental biology. Here, we briefly introduce the history, basic principles, and different localization microscopy methods with special focus on direct stochastic optical reconstruction microscopy (dSTORM) and summarize key developments and examples of two- and three-dimensional localization microscopy of the last 8 years.
通过单分子定位实现的超分辨率成像(定位显微镜技术)能够以远低于衍射极限的空间分辨率解析细胞的结构组织和生物分子组装体的组成,几乎接近分子分辨率。荧光探针、高效且特异的标记技术以及精细的数据分析与解读策略的不断改进,进一步提升了定位显微镜技术。如今,它使我们能够探究亚细胞区室和分子机器中相互作用蛋白的分布及化学计量如何完成复杂的相互关联的细胞过程。因此,它在解决细胞与发育生物学的基本问题方面展现出潜力。在此,我们简要介绍其历史、基本原理以及不同的定位显微镜方法,特别关注直接随机光学重建显微镜(dSTORM),并总结过去8年二维和三维定位显微镜技术的关键进展及实例。