Suppr超能文献

超分辨率成像:当生物物理学遇上纳米光子学。

Super-resolution imaging: when biophysics meets nanophotonics.

作者信息

Koenderink A Femius, Tsukanov Roman, Enderlein Jörg, Izeddin Ignacio, Krachmalnicoff Valentina

机构信息

Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.

III. Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1,37077 Göttingen, Germany.

出版信息

Nanophotonics. 2021 Dec 15;11(2):169-202. doi: 10.1515/nanoph-2021-0551. eCollection 2022 Jan.

Abstract

Probing light-matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light-matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers. In bioimaging, the advent of super-resolution single-molecule localization microscopy (SMLM) has opened a completely new perspective for the study and understanding of molecular mechanisms, with unprecedented resolution, which take place inside the cell. Since then, the field of SMLM has been continuously improving, shifting from an initial drive for pushing technological limitations to the acquisition of new knowledge. Interestingly, such developments have become also of great interest for the study of light-matter interaction in nanostructured materials, either dielectric, metallic, or hybrid metallic-dielectric. The purpose of this review is to summarize the recent advances in the field of nanophotonics that have leveraged SMLM, and conversely to show how some concepts commonly used in nanophotonics can benefit the development of new microscopy techniques for biophysics. To this aim, we will first introduce the basic concepts of SMLM and the observables that can be measured. Then, we will link them with their corresponding physical quantities of interest in biophysics and nanophotonics and we will describe state-of-the-art experiments that apply SMLM to nanophotonics. The problem of localization artifacts due to the interaction of the fluorescent emitter with a resonant medium and possible solutions will be also discussed. Then, we will show how the interaction of fluorescent emitters with plasmonic structures can be successfully employed in biology for cell profiling and membrane organization studies. We present an outlook on emerging research directions enabled by the synergy of localization microscopy and nanophotonics.

摘要

在纳米尺度上探究光与物质的相互作用是现代光学中最引人入胜的课题之一。需要精确了解光与物质相互作用的领域范围广泛,包括纳米光子学、量子电动力学、原子物理学、生物传感、量子计算等等,这凸显了其重要性。在过去十年中,显微镜领域不断创新,推动了跨多个长度尺度(从微米到纳米)观察此类现象的能力。在生物成像中,超分辨率单分子定位显微镜(SMLM)的出现为研究和理解细胞内发生的分子机制开辟了全新的视角,其分辨率前所未有的高。从那时起,SMLM领域一直在不断改进,从最初突破技术限制的驱动转向获取新知识。有趣的是,这些发展对于研究介电、金属或金属 - 介电混合的纳米结构材料中的光与物质相互作用也变得极具吸引力。本综述的目的是总结利用SMLM的纳米光子学领域的最新进展,反之展示纳米光子学中常用的一些概念如何有益于生物物理学新显微镜技术的发展。为此,我们将首先介绍SMLM的基本概念以及可以测量的可观测量。然后,我们将把它们与生物物理学和纳米光子学中相应的感兴趣的物理量联系起来,并描述将SMLM应用于纳米光子学的最新实验。还将讨论由于荧光发射体与共振介质相互作用导致的定位伪影问题以及可能的解决方案。然后,我们将展示荧光发射体与等离子体结构的相互作用如何能够成功地应用于生物学中的细胞分析和膜组织研究。我们对由定位显微镜和纳米光子学协同作用促成的新兴研究方向进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b132/11501358/69a1a114eb96/j_nanoph-2021-0551_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验