Suppr超能文献

基于回归分析对病原体菌株在自然流行中所起作用进行排名。

Regression-based ranking of pathogen strains with respect to their contribution to natural epidemics.

作者信息

Soubeyrand Samuel, Tollenaere Charlotte, Haon-Lasportes Emilie, Laine Anna-Liisa

机构信息

UR546 Biostatistics and Spatial Processes, INRA, Avignon, France es that the sum of the estimated propor.

Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland.

出版信息

PLoS One. 2014 Jan 31;9(1):e86591. doi: 10.1371/journal.pone.0086591. eCollection 2014.

Abstract

Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.

摘要

病原体种群中的遗传变异可能是推动其宿主种群疾病动态异质性的一个重要因素。然而,迄今为止,我们对疾病中的遗传多样性如何影响流行病学动态了解甚少,因为缺乏回答这个问题所需的数据和工具。在这里,我们将病原体遗传数据与疾病进展的流行病学监测相结合,并引入一种统计探索方法来研究病原体菌株在田间表现的差异。该方法利用提供疾病在时间和空间上进展度量的流行病学数据,以及指示采样病原体菌株相对空间模式的遗传数据。应用这种方法可以根据病原体菌株对自然流行的贡献对其进行排名,并评估排名的显著性。该方法首先在模拟数据上进行测试,包括从原始的、随机的多菌株流行模型获得的数据。然后将其应用于在野生宿主种群中发生的白粉病一次自然流行期间收集的流行病学和遗传数据。基于模拟研究,我们得出结论,如果采样力度足够,该方法可以实现对病原体菌株进行排名的目标。对于白粉病数据,该方法表明,其中一个采样菌株的适应性往往高于其他四个采样菌株,突出了菌株多样性对疾病动态的重要性。我们允许在自然流行中比较病原体菌株的方法,是对在受控条件下使用实验感染来估计不同病原体菌株适应性的经典做法的补充。我们在R包StrainRanking中实现的统计工具主要基于回归,并且不依赖于对病原体动态的机械假设。因此,该方法可以应用于广泛的病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e618/3909007/5e2605f8ece6/pone.0086591.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验