Liu Yingpeng, Keefe Kathy, Tang Xiaoqing, Lin Shen, Smith George M
Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2014 Feb 3;9(2):e87447. doi: 10.1371/journal.pone.0087447. eCollection 2014.
Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV) induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST), rubrospinal tract (RST) and the central axons of dorsal root ganglion (DRG) in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss) AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ) respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.
在轴突再生研究中,有多种类型的示踪剂可供使用,但它们需要额外进行示踪剂注射操作、耗时的免疫组织化学分析,并且会导致非特异性标记。在过去几年中,人们付出了巨大努力探索其他方法,尤其是使用病毒载体来研究损伤后的轴突再生。最近的研究表明,自我互补腺相关病毒(scAAV)具有高转导效率和更快的转基因表达速度。在此,我们首次描述了使用scAAV2-GFP在正常和损伤动物模型中标记皮质脊髓束(CST)、红核脊髓束(RST)以及背根神经节(DRG)的中枢轴突中的长投射轴突。我们发现scAAV2-GFP能够有效地转导感觉运动皮层、红核和DRG中的神经元。强烈的GFP表达可以沿轴突顺行运输,分别标记来自CST、RST和DRG中枢轴突的众多轴突纤维。在共标记切片中将scAAV2载体与单链(ss)AAV2载体进行比较,结果显示在DRG神经元及其轴突中,scAAV2载体诱导的转基因表达比ssAAV2载体更快、更强。在脊髓损伤和背根挤压损伤模型中,scAAV-GFP分别能够有效地标记损伤腔周围和背根进入区(DREZ)的损伤轴突和再生轴突。此外,scAAV2-GFP载体可以与传统示踪剂结合,在脊髓损伤后特异性标记感觉和运动轴突。因此,我们表明使用scAAV2-GFP作为示踪剂是研究损伤后轴突再生的一种更有效且高效的方法。