Luxembourg Centre for Systems Biomedicine, University of Luxembourg , 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg.
Anal Chem. 2014 Feb 18;86(4):2221-8. doi: 10.1021/ac403879d. Epub 2014 Feb 5.
The accurate determination of mass isotopomer distributions (MID) is of great significance for stable isotope-labeling experiments. Most commonly, MIDs are derived from gas chromatography/electron ionization mass spectrometry (GC/EI-MS) measurements. The analysis of fragment ions formed during EI, which contain only specific parts of the original molecule can provide valuable information on the positional distribution of the label. The chemical formula of a fragment ion is usually applied to derive the correction matrix for accurate MID calculation. Hence, the correct assignment of chemical formulas to fragment ions is of crucial importance for correct MIDs. Moreover, the positional distribution of stable isotopes within a fragment ion is of high interest for stable isotope-assisted metabolomics techniques. For example, (13)C-metabolic flux analyses ((13)C-MFA) are dependent on the exact knowledge of the number and position of retained carbon atoms of the unfragmented molecule. Fragment ions containing different carbon atoms are of special interest, since they can carry different flux information. However, the process of mass spectral fragmentation is complex, and identifying the substructures and chemical formulas for these fragment ions is nontrivial. For that reason, we developed an algorithm, based on a systematic bond cleavage, to determine chemical formulas and retained atoms for EI derived fragment ions. Here, we present the fragment formula calculator (FFC) algorithm that can calculate chemical formulas for fragment ions where the chemical bonding (e.g., Lewis structures) of the intact molecule is known. The proposed algorithm is able to cope with general molecular rearrangement reactions occurring during EI in GC/MS measurements. The FFC algorithm is able to integrate stable isotope labeling experiments into the analysis and can automatically exclude candidate formulas that do not fit the observed labeling patterns.1 We applied the FFC algorithm to create a fragment ion repository that contains the chemical formulas and retained carbon atoms of a wide range of trimethylsilyl and tert-butyldimethylsilyl derivatized compounds. In total, we report the chemical formulas and backbone carbon compositions for 160 fragment ions of 43 alkylsilyl-derivatives of primary metabolites. Finally, we implemented the FFC algorithm in an easy-to-use graphical user interface and made it publicly available at http://www.ffc.lu .
准确确定质量同位素分布(MID)对于稳定同位素标记实验非常重要。最常见的方法是通过气相色谱/电子电离质谱(GC/EI-MS)测量来获得 MID。分析 EI 过程中形成的碎片离子,这些碎片离子只包含原始分子的特定部分,可以提供有关标记位置分布的有价值信息。碎片离子的化学式通常用于推导准确 MID 计算的校正矩阵。因此,正确将化学式分配给碎片离子对于正确的 MID 至关重要。此外,对于稳定同位素辅助代谢组学技术,稳定同位素在碎片离子内的位置分布也非常重要。例如,(13)C-代谢通量分析((13)C-MFA)依赖于对未碎片化分子保留碳原子的数量和位置的确切了解。含有不同碳原子的碎片离子特别有趣,因为它们可以携带不同的通量信息。然而,质谱碎裂过程非常复杂,识别这些碎片离子的亚结构和化学式并非易事。为此,我们开发了一种基于系统键断裂的算法,用于确定 EI 衍生的碎片离子的化学式和保留原子。在这里,我们介绍了碎片公式计算器(FFC)算法,该算法可以计算已知完整分子化学键(例如,路易斯结构)的碎片离子的化学式。所提出的算法能够应对 GC/MS 测量中 EI 过程中发生的一般分子重排反应。FFC 算法能够将稳定同位素标记实验集成到分析中,并自动排除不符合观察到的标记模式的候选公式。1 我们应用 FFC 算法创建了一个碎片离子库,其中包含广泛的三甲基硅烷基和叔丁基二甲基硅烷基衍生化合物的化学式和保留碳原子。总共,我们报告了 43 种烷基硅烷基衍生物的 160 个碎片离子的化学式和主链碳原子组成。最后,我们在易于使用的图形用户界面中实现了 FFC 算法,并在 http://www.ffc.lu 上公开发布了它。