Suppr超能文献

IDH1 介导的还原性谷氨酰胺代谢在低氧条件下促进脂肪生成。

Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.

Abstract

Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis, the regulation and use of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells use reductive metabolism of α-ketoglutarate to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase-1 (IDH1)-dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived α-ketoglutarate for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel-Lindau tumour suppressor protein preferentially use reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon use to produce AcCoA and support lipid synthesis in mammalian cells.

摘要

乙酰辅酶 A(AcCoA)是脂肪酸合成和蛋白质乙酰化的中心生物合成前体。在哺乳动物细胞代谢的传统观点中,AcCoA 主要通过细胞质中的柠檬酸穿梭和 ATP 柠檬酸裂解酶从葡萄糖衍生的丙酮酸生成。然而,表现出有氧糖酵解和缺氧的增殖细胞将葡萄糖转化为乳酸的比例接近化学计量,将葡萄糖碳从三羧酸循环和脂肪酸合成中转移出去。尽管谷氨酰胺的消耗水平超过氮合成所需的水平,但缺氧细胞中谷氨酰胺代谢的调节和利用还不是很清楚。在这里,我们表明人类细胞使用α-酮戊二酸的还原性代谢来合成 AcCoA 用于脂质合成。这种异柠檬酸脱氢酶 1(IDH1)依赖性途径在正常培养条件下在大多数细胞系中都是活跃的,但在低氧条件下生长的细胞几乎完全依赖于从谷氨酰胺衍生的α-酮戊二酸的还原性羧化作用来进行从头脂肪生成。此外,缺乏 von Hippel-Lindau 肿瘤抑制蛋白的肾细胞系即使在正常氧水平下也优先使用还原性谷氨酰胺代谢来进行脂质生物合成。这些结果确定了氧气在调节用于产生 AcCoA 的碳利用以及支持哺乳动物细胞中脂质合成方面的关键作用。

相似文献

1
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
2
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19611-6. doi: 10.1073/pnas.1117773108. Epub 2011 Nov 21.
4
Reductive carboxylation supports growth in tumour cells with defective mitochondria.
Nature. 2011 Nov 20;481(7381):385-8. doi: 10.1038/nature10642.
5
Metabolic and mind shifts: from glucose to glutamine and acetate addictions in cancer.
Curr Opin Clin Nutr Metab Care. 2015 Jul;18(4):346-53. doi: 10.1097/MCO.0000000000000178.
6
Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
Nature. 2016 Apr 14;532(7598):255-8. doi: 10.1038/nature17393. Epub 2016 Apr 6.
8
Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.
Pigment Cell Melanoma Res. 2012 May;25(3):375-83. doi: 10.1111/j.1755-148X.2012.00989.x. Epub 2012 Mar 27.

引用本文的文献

2
Polyclonality and metabolic heterogeneity in a colorectal tumor model.
iScience. 2025 Jul 10;28(8):113090. doi: 10.1016/j.isci.2025.113090. eCollection 2025 Aug 15.
3
Androgens drive SLC1A5-dependent metabolic reprogramming in polycystic ovary syndrome.
Nat Commun. 2025 Aug 15;16(1):7611. doi: 10.1038/s41467-025-62951-z.
4
Complex II assembly drives metabolic adaptation to OXPHOS dysfunction.
Sci Adv. 2025 Aug 15;11(33):eadr6012. doi: 10.1126/sciadv.adr6012.
5
ZBTB11 depletion targets metabolic vulnerabilities in KRAS inhibitor-resistant PDAC.
Nat Chem Biol. 2025 Aug 11. doi: 10.1038/s41589-025-01978-1.
6
Metabolic checkpoints in immune cell reprogramming: rewiring immunometabolism for cancer therapy.
Mol Cancer. 2025 Aug 2;24(1):210. doi: 10.1186/s12943-025-02407-6.
7
Inhibition of HDAC6 alters fumarate hydratase activity and mitochondrial structure.
Nat Commun. 2025 Jul 28;16(1):6923. doi: 10.1038/s41467-025-61897-6.
8
The HIF axes in cancer: angiogenesis, metabolism, and immune-modulation.
Trends Biochem Sci. 2025 Aug;50(8):677-694. doi: 10.1016/j.tibs.2025.06.005. Epub 2025 Jul 9.
9
Some paradoxes and unresolved aspects of hepatic de novo lipogenesis.
NPJ Metab Health Dis. 2024 Aug 2;2(1):18. doi: 10.1038/s44324-024-00020-7.
10
Urea cycle dysregulation: a new frontier in cancer metabolism and immune evasion.
Cell Commun Signal. 2025 Jul 1;23(1):307. doi: 10.1186/s12964-025-02328-3.

本文引用的文献

1
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells.
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8674-9. doi: 10.1073/pnas.1016627108. Epub 2011 May 9.
2
Quiescent fibroblasts exhibit high metabolic activity.
PLoS Biol. 2010 Oct 19;8(10):e1000514. doi: 10.1371/journal.pbio.1000514.
3
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93. doi: 10.1073/pnas.1003428107. Epub 2010 Apr 26.
5
HIF-1: upstream and downstream of cancer metabolism.
Curr Opin Genet Dev. 2010 Feb;20(1):51-6. doi: 10.1016/j.gde.2009.10.009. Epub 2009 Nov 26.
6
Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells.
J Biotechnol. 2009 Nov;144(3):167-74. doi: 10.1016/j.jbiotec.2009.07.010. Epub 2009 Jul 19.
7
ATP-citrate lyase links cellular metabolism to histone acetylation.
Science. 2009 May 22;324(5930):1076-80. doi: 10.1126/science.1164097.
8
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.
Nature. 2009 Apr 9;458(7239):762-5. doi: 10.1038/nature07823. Epub 2009 Feb 15.
9
Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing.
Mol Cell. 2008 Dec 26;32(6):838-48. doi: 10.1016/j.molcel.2008.12.004.
10
ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer.
Cancer Res. 2008 Oct 15;68(20):8547-54. doi: 10.1158/0008-5472.CAN-08-1235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验