Suppr超能文献

NQO1可生物激活的药物β-拉帕醌可改变NQO1阳性胰腺癌细胞的氧化还原状态,从而扰乱中心碳代谢。

The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism.

作者信息

Silvers Molly A, Deja Stanislaw, Singh Naveen, Egnatchik Robert A, Sudderth Jessica, Luo Xiuquan, Beg Muhammad S, Burgess Shawn C, DeBerardinis Ralph J, Boothman David A, Merritt Matthew E

机构信息

From the Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center.

Advanced Imaging Research Center (AIRC), Division of Metabolic Mechanisms of Disease.

出版信息

J Biol Chem. 2017 Nov 3;292(44):18203-18216. doi: 10.1074/jbc.M117.813923. Epub 2017 Sep 15.

Abstract

Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. β-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target. β-Lapachone's therapeutic efficacy partially stems from the drug's induction of a futile NQO1-mediated redox cycle that causes high levels of superoxide and then peroxide formation, which damages DNA and causes hyperactivation of poly(ADP-ribose) polymerase, resulting in extensive NAD/ATP depletion. However, the effects of this drug on energy metabolism due to NAD depletion were never described. The futile redox cycle rapidly consumes O, rendering standard assays of Krebs cycle turnover unusable. In this study, a multimodal analysis, including metabolic imaging using hyperpolarized pyruvate, points to reduced oxidative flux due to NAD depletion after β-lapachone treatment of NQO1+ human pancreatic cancer cells. NAD-sensitive pathways, such as glycolysis, flux through lactate dehydrogenase, and the citric acid cycle (as inferred by flux through pyruvate dehydrogenase), were down-regulated by β-lapachone treatment. Changes in flux through these pathways should generate biomarkers useful for dose responses of β-lapachone treatment in humans, avoiding toxic side effects. Targeting the enzymes in these pathways for therapeutic treatment may have the potential to synergize with β-lapachone treatment, creating unique NQO1-selective combinatorial therapies for specific cancers. These findings warrant future studies of intermediary metabolism in patients treated with β-lapachone.

摘要

许多癌症治疗方法,比如用于治疗像胰腺导管腺癌这种难治性肿瘤的方法,会在正常健康组织中产生脱靶毒性,这凸显了对更具肿瘤选择性的化疗方法的需求。β-拉帕醌可被NAD(P)H:醌氧化还原酶1(NQO1)生物激活。这种酶在大多数实体癌中表达升高,因此是一个潜在的癌症特异性靶点。β-拉帕醌的治疗效果部分源于该药物诱导的一个无效的NQO1介导的氧化还原循环,该循环会导致高水平的超氧化物生成,进而形成过氧化物,这会损害DNA并导致聚(ADP-核糖)聚合酶过度激活,从而导致大量NAD/ATP消耗。然而,这种药物因NAD消耗对能量代谢的影响从未被描述过。这个无效的氧化还原循环会迅速消耗氧气,使得对 Krebs 循环周转率的标准检测方法无法使用。在本研究中,一种多模态分析,包括使用超极化丙酮酸进行代谢成像,表明在用β-拉帕醌处理NQO1 + 人胰腺癌细胞后,由于NAD消耗导致氧化通量降低。β-拉帕醌处理下调了NAD敏感途径,如糖酵解通量、通过乳酸脱氢酶的通量以及柠檬酸循环(通过丙酮酸脱氢酶的通量推断)。这些途径通量的变化应该会产生可用于人类β-拉帕醌治疗剂量反应的生物标志物,同时避免毒副作用。针对这些途径中的酶进行治疗可能有潜力与β-拉帕醌治疗协同作用,为特定癌症创造独特的NQO1选择性联合疗法。这些发现值得对接受β-拉帕醌治疗的患者的中间代谢进行进一步研究。

相似文献

4
Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent.
Toxicol Appl Pharmacol. 2014 Dec 15;281(3):285-93. doi: 10.1016/j.taap.2014.10.012. Epub 2014 Oct 29.
6
An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.
Cancer Res. 2012 Jun 15;72(12):3038-47. doi: 10.1158/0008-5472.CAN-11-3135. Epub 2012 Apr 24.
7
Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers.
Mol Cancer Ther. 2013 Oct;12(10):2110-20. doi: 10.1158/1535-7163.MCT-12-0962. Epub 2013 Jul 24.
8
An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11832-7. doi: 10.1073/pnas.0702176104. Epub 2007 Jul 3.

引用本文的文献

2
The STEAP4 target NQO1 mediates colon tumorigenesis.
J Cell Sci. 2025 May 15;138(10). doi: 10.1242/jcs.263402. Epub 2025 May 22.
4
β-lapachone suppresses carcinogenesis of cervical cancer via interaction with AKT1.
Front Pharmacol. 2025 Feb 20;16:1509568. doi: 10.3389/fphar.2025.1509568. eCollection 2025.
5
SP600125, a selective JNK inhibitor, is a potent inhibitor of NAD(P)H: quinone oxidoreductase 1 (NQO1).
Acta Pharmacol Sin. 2025 Apr;46(4):1137-1144. doi: 10.1038/s41401-024-01418-1. Epub 2024 Nov 25.
6
Immune-related cell death index and its application for hepatocellular carcinoma.
NPJ Precis Oncol. 2024 Sep 8;8(1):194. doi: 10.1038/s41698-024-00693-9.
7
β-Lapachone Exerts Hypnotic Effects via Adenosine A Receptor in Mice.
Biomol Ther (Seoul). 2024 Sep 1;32(5):531-539. doi: 10.4062/biomolther.2024.106. Epub 2024 Aug 21.
8
Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging.
Cells. 2024 Jul 29;13(15):1272. doi: 10.3390/cells13151272.
10
Antifungal activity of β-lapachone against a fluconazole-resistant Candida auris strain.
Braz J Microbiol. 2024 Sep;55(3):2593-2601. doi: 10.1007/s42770-024-01375-1. Epub 2024 May 14.

本文引用的文献

1
Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors.
Cancer Cell. 2016 Dec 12;30(6):940-952. doi: 10.1016/j.ccell.2016.11.006.
2
Hyperpolarized 13C Metabolic MRI of the Human Heart: Initial Experience.
Circ Res. 2016 Nov 11;119(11):1177-1182. doi: 10.1161/CIRCRESAHA.116.309769. Epub 2016 Sep 15.
5
Depleting Tumor-NQO1 Potentiates Anoikis and Inhibits Growth of NSCLC.
Mol Cancer Res. 2016 Jan;14(1):14-25. doi: 10.1158/1541-7786.MCR-15-0207-T. Epub 2015 Nov 9.
6
Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone.
Cancer Metab. 2015 Oct 12;3:12. doi: 10.1186/s40170-015-0137-1. eCollection 2015.
7
Nanotechnology-enabled delivery of NQO1 bioactivatable drugs.
J Drug Target. 2015;23(7-8):672-80. doi: 10.3109/1061186X.2015.1073296.
9
Hyperpolarized (13)C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs.
Methods Enzymol. 2015;561:73-106. doi: 10.1016/bs.mie.2015.04.006. Epub 2015 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验