Karta Maya R, Gavala Monica L, Curran Colleen S, Wickert Lisa E, Keely Patricia J, Gern James E, Bertics Paul J
1 Molecular and Cellular Pharmacology Graduate Program, and.
Am J Respir Cell Mol Biol. 2014 Jul;51(1):125-34. doi: 10.1165/rcmb.2013-0404OC.
Recent studies suggest that both bacteria and rhinoviruses (RVs) contribute to asthma exacerbations. We hypothesized that bacteria might alter antiviral responses early in the course of infection by modifying monocyte-lineage chemokine responses to RV infection. To test this hypothesis, human blood monocytes or bronchoalveolar lavage (BAL) macrophages were treated with RV types A016, B014, A001, and/or A002 in the presence or absence of LPS, and secretion of chemokines (CXCL10, CXCL11, CCL2, and CCL8) and IFN-α was measured by ELISA. Treatment with RV alone induced blood monocytes and BAL macrophages to secrete CXCL10, CXCL11, CCL2, and CCL8. Pretreatment with LPS significantly attenuated RV-induced CXCL10, CXCL11, and CCL8 secretion by 68-99.9% on average (P < 0.0001, P < 0.004, and P < 0.002, respectively), but did not inhibit RV-induced CCL2 from blood monocytes. Similarly, LPS inhibited RV-induced CXCL10 and CXCL11 secretion by over 88% on average from BAL macrophages (P < 0.002 and P < 0.0001, respectively). Furthermore, LPS inhibited RV-induced signal transducer and activator of transcription 1 phosphorylation (P < 0.05), as determined by immunoblotting, yet augmented RV-induced IFN-α secretion (P < 0.05), and did not diminish expression of RV target receptors, as measured by flow cytometry. In summary, major and minor group RVs strongly induce chemokine expression and IFN-α from monocytic cells. The bacterial product, LPS, specifically inhibits monocyte and macrophage secretion of RV-induced CXCL10 and CXCL11, but not other highly induced chemokines or IFN-α. These effects suggest that airway bacteria could modulate the pattern of virus-induced cell recruitment and inflammation in the airways.
近期研究表明,细菌和鼻病毒(RVs)均与哮喘急性发作有关。我们推测,细菌可能通过改变单核细胞系趋化因子对RV感染的反应,在感染早期改变抗病毒反应。为验证这一假设,在存在或不存在脂多糖(LPS)的情况下,用A016型、B014型、A001型和/或A002型RV处理人血单核细胞或支气管肺泡灌洗(BAL)巨噬细胞,并通过酶联免疫吸附测定(ELISA)检测趋化因子(CXCL10、CXCL11、CCL2和CCL8)和干扰素-α(IFN-α)的分泌。单独用RV处理可诱导血单核细胞和BAL巨噬细胞分泌CXCL10、CXCL11、CCL2和CCL8。LPS预处理可使RV诱导的CXCL10、CXCL11和CCL8分泌平均显著减少68% - 99.9%(分别为P < 0.0001、P < 0.004和P < 0.002),但不抑制血单核细胞中RV诱导的CCL2分泌。同样,LPS可使BAL巨噬细胞中RV诱导的CXCL10和CXCL11分泌平均减少超过88%(分别为P < 0.002和P < 0.0001)。此外,通过免疫印迹法测定,LPS可抑制RV诱导的信号转导和转录激活因子1磷酸化(P < 0.05),但可增强RV诱导的IFN-α分泌(P < 0.05),且通过流式细胞术检测未发现其降低RV靶受体的表达。总之,主要和次要组RVs可强烈诱导单核细胞表达趋化因子和IFN-α。细菌产物LPS可特异性抑制单核细胞和巨噬细胞分泌RV诱导的CXCL10和CXCL11,但不抑制其他高度诱导的趋化因子或IFN-α。这些效应表明气道细菌可调节病毒诱导的气道细胞募集和炎症模式。