Suppr超能文献

一种有活力的平衡 H/D 分馏因子量表揭示了蛋白质中氢键的自由能。

An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins.

机构信息

Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, California.

出版信息

Protein Sci. 2014 May;23(5):566-75. doi: 10.1002/pro.2435. Epub 2014 Mar 17.

Abstract

Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as -7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by -4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies.

摘要

平衡 H/D 分馏因子已被广泛用于定性评估蛋白质结构、酶活性位点和 DNA 中的氢键强度。然而,分馏因子与氢键自由能之间的关系尚不清楚。在这里,我们建立了分馏因子与自由能之间的经验关系,从而可以简单而定量地测量氢键自由能。将我们的经验关系应用于蛋白质中先前的分馏因子研究,我们发现:[1] 在折叠状态下,与β-折叠相比,α-螺旋中的骨架氢键平均仅强约 0.2 kcal/mol。[2] 电荷稳定的氢键平均比中性氢键强约 2 kcal/mol,并且可以强至-7 kcal/mol。[3] 酶催化循环中几个氢键的变化可以通过-4.2 kcal/mol 稳定中间状态。[4] 骨架氢键可以极大地促进构象变化的能量,可能在指导构象变化中发挥重要作用。[5] 配体结合后,骨架氢键总体上变得更加均匀,这可能有助于整个蛋白质结构参与活性位点的事件。我们的能量标度为进一步探索氢键自由能提供了一种简单的方法。

相似文献

2
Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices.骨干氢键强度在跨膜螺旋中差异很大。
J Am Chem Soc. 2017 Aug 9;139(31):10742-10749. doi: 10.1021/jacs.7b04819. Epub 2017 Jul 25.
3
Reframing the Protein Folding Problem: Entropy as Organizer.重新构建蛋白质折叠问题:熵作为组织者。
Biochemistry. 2021 Dec 14;60(49):3753-3761. doi: 10.1021/acs.biochem.1c00687. Epub 2021 Dec 2.
7
Energetics of hydrogen bonds in peptides.肽中氢键的能量学
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12683-7. doi: 10.1073/pnas.2133366100. Epub 2003 Oct 14.

引用本文的文献

1
Phosphorylation at Ser65 modulates ubiquitin conformational dynamics.丝氨酸 65 位的磷酸化修饰调节泛素构象动态。
Structure. 2023 Jul 6;31(7):884-890.e2. doi: 10.1016/j.str.2023.05.006. Epub 2023 Jun 1.
6
Membrane proteins enter the fold.膜蛋白进入折叠。
Curr Opin Struct Biol. 2021 Aug;69:124-130. doi: 10.1016/j.sbi.2021.03.006. Epub 2021 May 8.
9
Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices.骨干氢键强度在跨膜螺旋中差异很大。
J Am Chem Soc. 2017 Aug 9;139(31):10742-10749. doi: 10.1021/jacs.7b04819. Epub 2017 Jul 25.

本文引用的文献

1
Membrane protein folding: how important are hydrogen bonds?膜蛋白折叠:氢键有多重要?
Curr Opin Struct Biol. 2011 Feb;21(1):42-9. doi: 10.1016/j.sbi.2010.10.003. Epub 2010 Nov 12.
4
Energetics of protein hydrogen bonds.蛋白质氢键的能量学
Nat Struct Mol Biol. 2009 Jul;16(7):681-2. doi: 10.1038/nsmb0709-681.
10
Conserved thermodynamic contributions of backbone hydrogen bonds in a protein fold.蛋白质折叠中主链氢键的保守热力学贡献。
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2600-4. doi: 10.1073/pnas.0508121103. Epub 2006 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验