Suppr超能文献

物理力如何驱动螺旋膜蛋白折叠过程。

How physical forces drive the process of helical membrane protein folding.

机构信息

Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, CA, USA.

出版信息

EMBO Rep. 2022 Feb 3;23(3):e53025. doi: 10.15252/embr.202153025. Epub 2022 Feb 8.

Abstract

Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.

摘要

蛋白质折叠是生命的基本过程,在整个生物学中具有重要意义。事实上,数以万计的突变与疾病有关,而这些突变大多被认为会影响蛋白质折叠而不是功能。正确的折叠也是设计的关键要素。这些因素促使人们对蛋白质折叠进行了几十年的研究。不幸的是,与可溶性蛋白相比,人们对膜蛋白折叠的了解还存在差距。这种差距部分是由于与膜蛋白研究相关的技术挑战更大,但也因为存在其他复杂性。虽然可溶性蛋白在均匀的水环境中折叠,但膜蛋白在从大体积水到高度带电到非极性的环境中折叠。因此,驱动折叠的力在蛋白质的不同区域有所不同,并且这种复杂性需要纳入我们对折叠过程的理解中。在这里,我们回顾了我们对膜蛋白折叠生物物理学的理解。尽管面临更大的挑战,但更好的模型系统和新的实验技术开始揭示膜蛋白折叠中的力和途径。

相似文献

3
Toward understanding driving forces in membrane protein folding.迈向理解膜蛋白折叠的驱动力。
Arch Biochem Biophys. 2014 Dec 15;564:297-313. doi: 10.1016/j.abb.2014.07.031. Epub 2014 Aug 6.
5
Energetics of membrane protein folding and stability.膜蛋白折叠与稳定性的能量学
Arch Biochem Biophys. 2006 Sep 1;453(1):32-53. doi: 10.1016/j.abb.2006.03.023. Epub 2006 Apr 7.
6
Structural insight into co-translational membrane protein folding.共翻译质膜蛋白折叠的结构见解。
Biochim Biophys Acta Biomembr. 2020 Jan 1;1862(1):183019. doi: 10.1016/j.bbamem.2019.07.007. Epub 2019 Jul 11.
7
Energetics of membrane protein folding.膜蛋白折叠的能量学。
Annu Rev Biophys. 2014;43:233-55. doi: 10.1146/annurev-biophys-051013-022926.
9
Folding speeds of helical membrane proteins.螺旋膜蛋白的折叠速度。
Biochem Soc Trans. 2024 Feb 28;52(1):491-501. doi: 10.1042/BST20231315.
10
How bilayer properties influence membrane protein folding.双层性质如何影响膜蛋白折叠。
Protein Sci. 2020 Dec;29(12):2348-2362. doi: 10.1002/pro.3973. Epub 2020 Oct 24.

引用本文的文献

1
The lipid bilayer strengthens the cooperative network of membrane proteins.脂质双层增强了膜蛋白的协同网络。
Sci Adv. 2025 Jul 4;11(27):eadv9568. doi: 10.1126/sciadv.adv9568. Epub 2025 Jul 2.
10
Ion and lipid orchestration of secondary active transport.离子和脂质对次级主动转运的调控。
Nature. 2024 Feb;626(8001):963-974. doi: 10.1038/s41586-024-07062-3. Epub 2024 Feb 28.

本文引用的文献

4
Local Bilayer Hydrophobicity Modulates Membrane Protein Stability.局部双层疏水性调节膜蛋白稳定性。
J Am Chem Soc. 2021 Jan 20;143(2):764-772. doi: 10.1021/jacs.0c09412. Epub 2021 Jan 7.
5
How bilayer properties influence membrane protein folding.双层性质如何影响膜蛋白折叠。
Protein Sci. 2020 Dec;29(12):2348-2362. doi: 10.1002/pro.3973. Epub 2020 Oct 24.
8
Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy.膜蛋白具有独特的快速内部运动和剩余构象熵。
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11108-11114. doi: 10.1002/anie.202003527. Epub 2020 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验