University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany.
J Nucl Med. 2014 Mar;55(3):373-8. doi: 10.2967/jnumed.113.129825. Epub 2014 Feb 6.
Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference.
Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging.
PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging exhibited a high correlation (R = 0.74 and 0.86, respectively; P < 0.0001). Size measurements showed an excellent correlation between (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT (R = 0.99; P < 0.0001). The lower and upper limits of agreement between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging using Bland-Altman analysis were -2.34 to 3.89 for SUV(mean), -7.42 to 4.40 for SUV(max), and -0.59 to 0.83 for the tumor size, respectively.
(18)F-FDG PET/MR imaging using a dedicated pulmonary MR imaging protocol, compared with (18)F-FDG PET/CT, does not provide advantages in thoracic staging in NSCLC patients.
本研究旨在通过组织病理学作为参考,比较专用肺部(18)F-FDG PET/MR 成像方案与(18)F-FDG PET/CT 用于非小细胞肺癌(NSCLC)患者的原发和局部淋巴结分期。
22 例经组织病理学证实的 NSCLC 患者(男 12 例,女 10 例;平均年龄±标准差,65.1±9.1 岁)接受了(18)F-FDG PET/CT 检查,随后进行了(18)F-FDG PET/MR 成像,包括专用肺部 MR 成像方案。第 7 版美国癌症联合委员会分期手册中的 T 和 N 分期由 2 位读者分别在单独的会议中进行,分别用于(18)F-FDG PET/CT 和 PET/MR 成像。组织病理学结果作为标准参考。测量和比较了(18)F-FDG PET/CT 和 PET/MR 成像中原发肿瘤的平均和最大标准化摄取值(SUV(mean)和 SUV(max))和最大直径。
在 16 例患者(100%)中,PET/MR 成像和(18)F-FDG PET/CT 在 T 分期上一致。与组织病理学相比,(18)F-FDG PET/CT 和 PET/MR 成像均正确分期了所有患者(100%)。(18)F-FDG PET/CT 和(18)F-FDG PET/MR 成像对淋巴结转移检测的结果无统计学差异(P=0.48)。对于胸内 N 分期的定义,PET/MR 成像和(18)F-FDG PET/CT 在 22 例患者中的 20 例(91%)中一致。PET/MR 成像在 22 例患者中的 20 例(91%)中正确确定了 N 分期。(18)F-FDG PET/CT 在 22 例患者中的 18 例(82%)中正确确定了 N 分期。(18)F-FDG PET/MR 成像和(18)F-FDG PET/CT 中 NSCLC 的 SUV(mean)和 SUV(max)平均值差异分别为 0.21 和-5.06。这些差异无统计学意义(P>0.05)。(18)F-FDG PET/CT 和(18)F-FDG PET/MR 成像中 SUV(mean)和 SUV(max)的测量值表现出高度相关性(R 值分别为 0.74 和 0.86;P<0.0001)。大小测量值显示(18)F-FDG PET/MR 成像和(18)F-FDG PET/CT 之间具有极好的相关性(R=0.99;P<0.0001)。Bland-Altman 分析显示,(18)F-FDG PET/CT 和(18)F-FDG PET/MR 成像之间的下限和上限分别为 SUV(mean)为-2.34 至 3.89,SUV(max)为-7.42 至 4.40,肿瘤大小为-0.59 至 0.83。
与(18)F-FDG PET/CT 相比,使用专用肺部(18)F-FDG PET/MR 成像方案在 NSCLC 患者的胸部分期中没有优势。