Suppr超能文献

用于形状复合体变异性分析的贝叶斯图谱估计

Bayesian atlas estimation for the variability analysis of shape complexes.

作者信息

Gori Pietro, Colliot Olivier, Worbe Yulia, Marrakchi-Kacem Linda, Lecomte Sophie, Poupon Cyril, Hartmann Andreas, Ayache Nicholas, Durrleman Stanley

机构信息

CNRS UMR 7225, Inserm UMR-S975, UPMC, CRICM, Paris, France.

Aramis Project-Team, Inria Paris-Rocquencourt, Paris, France.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):267-74. doi: 10.1007/978-3-642-40811-3_34.

Abstract

In this paper we propose a Bayesian framework for multiobject atlas estimation based on the metric of currents which permits to deal with both curves and surfaces without relying on point correspondence. This approach aims to study brain morphometry as a whole and not as a set of different components, focusing mainly on the shape and relative position of different anatomical structures which is fundamental in neuro-anatomical studies. We propose a generic algorithm to estimate templates of sets of curves (fiber bundles) and closed surfaces (sub-cortical structures) which have the same "form" (topology) of the shapes present in the population. This atlas construction method is based on a Bayesian framework which brings to two main improvements with respect to previous shape based methods. First, it allows to estimate from the data set a parameter specific to each object which was previously fixed by the user: the trade-off between data-term and regularity of deformations. In a multi-object analysis these parameters balance the contributions of the different objects and the need for an automatic estimation is even more crucial. Second, the covariance matrix of the deformation parameters is estimated during the atlas construction in a way which is less sensitive to the outliers of the population.

摘要

在本文中,我们基于流的度量提出了一种用于多对象图谱估计的贝叶斯框架,该框架允许在不依赖点对应关系的情况下处理曲线和曲面。这种方法旨在将脑形态计量学作为一个整体来研究,而不是作为一组不同的组件来研究,主要关注不同解剖结构的形状和相对位置,这在神经解剖学研究中至关重要。我们提出了一种通用算法来估计具有与群体中存在的形状相同“形式”(拓扑结构)的曲线集(纤维束)和封闭曲面(皮层下结构)的模板。这种图谱构建方法基于贝叶斯框架,与先前基于形状的方法相比有两个主要改进。首先,它允许从数据集中估计每个对象特有的一个参数,该参数以前是由用户固定的:数据项与变形正则性之间的权衡。在多对象分析中,这些参数平衡了不同对象的贡献,并且自动估计的需求更为关键。其次,在图谱构建过程中以一种对群体异常值不太敏感的方式估计变形参数的协方差矩阵。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验