Computer Science and Artificial Intelligence Laboratory, MIT, Massachusetts.
Computer Science and Artificial Intelligence Laboratory, MIT, Massachusetts; Brigham and Women's Hospital, Harvard Medical School, Massachusetts.
Med Image Anal. 2017 Oct;41:55-62. doi: 10.1016/j.media.2017.06.013. Epub 2017 Jul 8.
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.
我们提出了一种在变形转换初始速度线性空间中对解剖结构变异性进行有效概率建模的方法,并展示了其在大脑解剖临床研究中的优势。为了克服基于高维变形描述符的计算挑战,我们为基于主测地线分析 (PGA) 的潜在变量模型开发了一种低维形状描述符,该描述符有效地捕获了群体中的内在变异性。我们定义了一种新颖的形状先验,该先验将主模式显式表示为初始速度上带限空间中多元复高斯分布。我们在一组来自阿尔茨海默病神经影像学倡议 (ADNI) 数据库的 3D 脑 MRI 扫描上展示了我们模型的性能。与在高维图像空间中运行的最先进方法(如切空间 PCA (TPCA) 和概率主测地线分析 (PPGA))相比,我们的模型在计算成本显著降低的情况下,能够更紧凑地表示组间差异。