Suppr超能文献

使用微分同胚的低维参数化对解剖变异性进行概率建模。

Probabilistic modeling of anatomical variability using a low dimensional parameterization of diffeomorphisms.

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, Massachusetts.

Computer Science and Artificial Intelligence Laboratory, MIT, Massachusetts; Brigham and Women's Hospital, Harvard Medical School, Massachusetts.

出版信息

Med Image Anal. 2017 Oct;41:55-62. doi: 10.1016/j.media.2017.06.013. Epub 2017 Jul 8.

Abstract

We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.

摘要

我们提出了一种在变形转换初始速度线性空间中对解剖结构变异性进行有效概率建模的方法,并展示了其在大脑解剖临床研究中的优势。为了克服基于高维变形描述符的计算挑战,我们为基于主测地线分析 (PGA) 的潜在变量模型开发了一种低维形状描述符,该描述符有效地捕获了群体中的内在变异性。我们定义了一种新颖的形状先验,该先验将主模式显式表示为初始速度上带限空间中多元复高斯分布。我们在一组来自阿尔茨海默病神经影像学倡议 (ADNI) 数据库的 3D 脑 MRI 扫描上展示了我们模型的性能。与在高维图像空间中运行的最先进方法(如切空间 PCA (TPCA) 和概率主测地线分析 (PPGA))相比,我们的模型在计算成本显著降低的情况下,能够更紧凑地表示组间差异。

相似文献

2
Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations.通过图像变形的紧凑表示实现解剖变异的低维统计
Med Image Comput Comput Assist Interv. 2016 Oct;9902:166-173. doi: 10.1007/978-3-319-46726-9_20. Epub 2016 Oct 2.
4
Bayesian principal geodesic analysis in diffeomorphic image registration.微分同胚图像配准中的贝叶斯主测地线分析。
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):121-8. doi: 10.1007/978-3-319-10443-0_16.
6
Quantifying anatomical shape variations in neurological disorders.定量分析神经紊乱中的解剖结构变化。
Med Image Anal. 2014 Apr;18(3):616-33. doi: 10.1016/j.media.2014.01.001. Epub 2014 Feb 11.
7
Frequency Diffeomorphisms for Efficient Image Registration.用于高效图像配准的频率微分同胚
Inf Process Med Imaging. 2017 Jun;10265:559-570. doi: 10.1007/978-3-319-59050-9_44. Epub 2017 May 23.
8
Fast Geodesic Regression for Population-Based Image Analysis.用于基于人群的图像分析的快速测地线回归
Med Image Comput Comput Assist Interv. 2017 Sep;10433:317-325. doi: 10.1007/978-3-319-66182-7_37. Epub 2017 Sep 4.
9
Statistics on diffeomorphisms via tangent space representations.通过切空间表示的微分同胚统计。
Neuroimage. 2004;23 Suppl 1:S161-9. doi: 10.1016/j.neuroimage.2004.07.023.

引用本文的文献

1
Fast GPU 3D diffeomorphic image registration.快速GPU三维微分同胚图像配准
J Parallel Distrib Comput. 2021 Mar;149:149-162. doi: 10.1016/j.jpdc.2020.11.006. Epub 2020 Dec 10.

本文引用的文献

1
Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations.通过图像变形的紧凑表示实现解剖变异的低维统计
Med Image Comput Comput Assist Interv. 2016 Oct;9902:166-173. doi: 10.1007/978-3-319-46726-9_20. Epub 2016 Oct 2.
4
Bayesian principal geodesic analysis in diffeomorphic image registration.微分同胚图像配准中的贝叶斯主测地线分析。
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):121-8. doi: 10.1007/978-3-319-10443-0_16.
6
Bayesian atlas estimation for the variability analysis of shape complexes.用于形状复合体变异性分析的贝叶斯图谱估计
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):267-74. doi: 10.1007/978-3-642-40811-3_34.
7
Principal component based diffeomorphic surface mapping.基于主成分的可变形曲面映射。
IEEE Trans Med Imaging. 2012 Feb;31(2):302-11. doi: 10.1109/TMI.2011.2168567. Epub 2011 Sep 19.
8
Geodesic Shooting for Computational Anatomy.用于计算解剖学的测地线射击法
J Math Imaging Vis. 2006 Jan 31;24(2):209-228. doi: 10.1007/s10851-005-3624-0.
9
Evolutions equations in computational anatomy.计算解剖学中的演化方程。
Neuroimage. 2009 Mar;45(1 Suppl):S40-50. doi: 10.1016/j.neuroimage.2008.10.050. Epub 2008 Nov 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验