文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估与不同Q空间采样技术相关的结构连接组学。

Evaluating structural connectomics in relation to different Q-space sampling techniques.

作者信息

Rodrigues Paulo, Prats-Galino Alberto, Gallardo-Pujol David, Villoslada Pablo, Falcon Carles, Prckovska Vesna

机构信息

Mint Labs S.L., Barcelona, Spain.

LSNA, Facultat de Medicina, UB, Barcelona, Spain.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):671-8. doi: 10.1007/978-3-642-40811-3_84.


DOI:10.1007/978-3-642-40811-3_84
PMID:24505725
Abstract

Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

摘要

脑网络正成为神经科学领域的前沿研究内容。基于网络的功能和结构连接组分析能够产生用于脑部疾病的强大成像标志物。然而,构建结构连接组可以基于不同的采集和重建技术,而这些技术的信息内容和相互差异尚未在统一框架中得到恰当研究。如果对结构连接组的变化没有正确理解,在进行这类研究时可能会得出危险的结论。在这项工作中,我们通过分析和比较基于图形的测量方法,对由三种最重要的扩散加权成像技术(DTI、HARDI和DSI)获取的真实数据进行评估,以此来评估结构连接组。我们因此得出了几个重要结论,表明尽管不同技术在重建纤维的解剖结构上存在差异,但各自的连接组显示出20%的变化。

相似文献

[1]
Evaluating structural connectomics in relation to different Q-space sampling techniques.

Med Image Comput Comput Assist Interv. 2013

[2]
Reproducibility of the Structural Connectome Reconstruction across Diffusion Methods.

J Neuroimaging. 2016

[3]
Test-retest reliability of graph theory measures of structural brain connectivity.

Med Image Comput Comput Assist Interv. 2012

[4]
Construction of multi-scale common brain networks based on DICCCOL.

Inf Process Med Imaging. 2013

[5]
Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries.

Med Image Comput Comput Assist Interv. 2012

[6]
Fitting of two-tensor models without ad hoc assumptions to detect crossing fibers using clinical DWI data.

Magn Reson Imaging. 2012-12-8

[7]
Geodesic shape-based averaging.

Med Image Comput Comput Assist Interv. 2012

[8]
A Compressed-Sensing Approach for Super-Resolution Reconstruction of Diffusion MRI.

Inf Process Med Imaging. 2015

[9]
Construct and assess multimodal mouse brain connectomes via joint modeling of multi-scale DTI and neuron tracer data.

Med Image Comput Comput Assist Interv. 2014

[10]
Probabilistic shortest path tractography in DTI using Gaussian Process ODE solvers.

Med Image Comput Comput Assist Interv. 2014

引用本文的文献

[1]
Research Progress in Diffusion Spectrum Imaging.

Brain Sci. 2023-10-23

[2]
Relationship between White Matter Alterations and Pathophysiological Symptoms in Patients with Ultra-High Risk of Psychosis, First-Episode, and Chronic Schizophrenia.

Brain Sci. 2022-3-7

[3]
Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks.

Diagnostics (Basel). 2021-5-27

[4]
Probabilistic White Matter Atlases of Human Auditory, Basal Ganglia, Language, Precuneus, Sensorimotor, Visual and Visuospatial Networks.

Front Hum Neurosci. 2017-6-19

[5]
Age-related changes in structural connectivity are improved using subject-specific thresholding.

J Neurosci Methods. 2017-8-15

[6]
Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?

Front Comput Neurosci. 2016-2-16

[7]
Probabilistic atlases of default mode, executive control and salience network white matter tracts: an fMRI-guided diffusion tensor imaging and tractography study.

Front Hum Neurosci. 2015-11-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索