Rodrigues Paulo, Prats-Galino Alberto, Gallardo-Pujol David, Villoslada Pablo, Falcon Carles, Prckovska Vesna
Mint Labs S.L., Barcelona, Spain.
LSNA, Facultat de Medicina, UB, Barcelona, Spain.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):671-8. doi: 10.1007/978-3-642-40811-3_84.
Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.
脑网络正成为神经科学领域的前沿研究内容。基于网络的功能和结构连接组分析能够产生用于脑部疾病的强大成像标志物。然而,构建结构连接组可以基于不同的采集和重建技术,而这些技术的信息内容和相互差异尚未在统一框架中得到恰当研究。如果对结构连接组的变化没有正确理解,在进行这类研究时可能会得出危险的结论。在这项工作中,我们通过分析和比较基于图形的测量方法,对由三种最重要的扩散加权成像技术(DTI、HARDI和DSI)获取的真实数据进行评估,以此来评估结构连接组。我们因此得出了几个重要结论,表明尽管不同技术在重建纤维的解剖结构上存在差异,但各自的连接组显示出20%的变化。
Med Image Comput Comput Assist Interv. 2013
Med Image Comput Comput Assist Interv. 2012
Inf Process Med Imaging. 2013
Med Image Comput Comput Assist Interv. 2012
Magn Reson Imaging. 2012-12-8
Med Image Comput Comput Assist Interv. 2012
Inf Process Med Imaging. 2015
Med Image Comput Comput Assist Interv. 2014
Med Image Comput Comput Assist Interv. 2014
Brain Sci. 2023-10-23
J Neurosci Methods. 2017-8-15
Front Comput Neurosci. 2016-2-16