Schober Michael, Kasenburg Niklas, Feragen Aasa, Hennig Philipp, Hauberg Soren
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):265-72. doi: 10.1007/978-3-319-10443-0_34.
Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity between regions of interest and contribute a Gaussian Process tractography algorithm which allows for both quantification and visualization of its posterior uncertainty. We use the uncertainty both in visualization of individual tracts as well as in heat maps of tract locations. Finally, we provide a quantitative evaluation of different metrics and algorithms showing that the adjoint metric (8] combined with our algorithm produces paths which agree most often with experts.
扩散张量成像中的纤维束成像通过观察局部扩散率来估计大脑中的连通性。这些观察结果存在噪声且分辨率较低,因此无法高精度地找到连接。我们使用概率数值方法来估计感兴趣区域之间的连通性,并贡献了一种高斯过程纤维束成像算法,该算法允许对其后验不确定性进行量化和可视化。我们在单个纤维束的可视化以及纤维束位置的热图中都使用了不确定性。最后,我们对不同的度量和算法进行了定量评估,结果表明伴随度量[8]与我们的算法相结合产生的路径与专家的意见最为一致。