Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536.
Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111.
Med Phys. 2014 Feb;41(2):021702. doi: 10.1118/1.4860135.
To investigate potential causes for differences in TG-43 brachytherapy dosimetry parameters in the existent literature for the model IAI-125A(125)I seed and to propose new standard dosimetry parameters.
The MCNP5 code was used for Monte Carlo (MC) simulations. Sensitivity of dose distributions, and subsequently TG-43 dosimetry parameters, was explored to reproduce historical methods upon which American Association of Physicists in Medicine (AAPM) consensus data are based. Twelve simulation conditions varying(125)I coating thickness, coating mass density, photon interaction cross-section library, and photon emission spectrum were examined.
Varying(125)I coating thickness, coating mass density, photon cross-section library, and photon emission spectrum for the model IAI-125A seed changed the dose-rate constant by up to 0.9%, about 1%, about 3%, and 3%, respectively, in comparison to the proposed standard value of 0.922 cGy h(-1) U(-1). The dose-rate constant values by Solberg et al. ["Dosimetric parameters of three new solid core (125)I brachytherapy sources," J. Appl. Clin. Med. Phys. 3, 119-134 (2002)], Meigooni et al. ["Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ (125)I brachytherapy source," Med. Phys. 29, 2152-2158 (2002)], and Taylor and Rogers ["An EGSnrc Monte Carlo-calculated database of TG-43 parameters," Med. Phys. 35, 4228-4241 (2008)] for the model IAI-125A seed and Kennedy et al. ["Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed™ brachytherapy source," Med. Phys. 37, 1681-1688 (2010)] for the model 6711 seed were +4.3% (0.962 cGy h(-1) U(-1)), +6.2% (0.98 cGy h(-1) U(-1)), +0.3% (0.925 cGy h(-1) U(-1)), and -0.2% (0.921 cGy h(-1) U(-1)), respectively, in comparison to the proposed standard value. Differences in the radial dose functions between the current study and both Solberg et al. and Meigooni et al. were <10% for r ≤ 5 cm, and increased for r > 5 cm with a maximum difference of 29% at r = 9 cm. In comparison to Taylor and Rogers, these differences were lower (maximum of 2% at r = 9 cm). For the similarly designed model 6711 (125)I seed, differences did not exceed 0.5% for 0.5 ≤ r ≤ 10 cm. Radial dose function values varied by 1% as coating thickness and coating density were changed. Varying the cross-section library and source spectrum altered the radial dose function by 25% and 12%, respectively, but these differences occurred at r = 10 cm where the dose rates were very low. The 2D anisotropy function results were most similar to those of Solberg et al. and most different to those of Meigooni et al. The observed order of simulation condition variables from most to least important for influencing the 2D anisotropy function was spectrum, coating thickness, coating density, and cross-section library.
Several MC radiation transport codes are available for calculation of the TG-43 dosimetry parameters for brachytherapy seeds. The physics models in these codes and their related cross-section libraries have been updated and improved since publication of the 2007 AAPM TG-43U1S1 report. Results using modern data indicated statistically significant differences in these dosimetry parameters in comparison to data recommended in the TG-43U1S1 report. Therefore, it seems that professional societies such as the AAPM should consider reevaluating the consensus data for this and others seeds and establishing a process of regular evaluations in which consensus data are based upon methods that remain state-of-the-art.
研究导致模型 IAI-125A(125)I 种子的 TG-43 近距离治疗剂量学参数在现有文献中存在差异的潜在原因,并提出新的标准剂量学参数。
使用 MCNP5 代码进行蒙特卡罗(MC)模拟。探索剂量分布的敏感性,进而探索 TG-43 剂量学参数,以重现基于美国医学物理学家协会(AAPM)共识数据的历史方法。检查了 12 种变化(125)I 涂层厚度、涂层质量密度、光子相互作用截面库和光子发射光谱的模拟条件。
与提议的标准值 0.922 cGy h(-1) U(-1)相比,变化(125)I 涂层厚度、涂层质量密度、光子截面库和光子发射光谱模型 IAI-125A 种子的剂量率常数分别变化了高达 0.9%、约 1%、约 3%和 3%。Solberg 等人的剂量率常数值[“三种新型固芯(125)I 近距离治疗源的剂量学参数”,J. Appl. Clin. Med. Phys. 3, 119-134 (2002)]、Meigooni 等人的[“IsoAid ADVANTAGE™(125)I 近距离治疗源剂量学特性的实验和理论确定”,Med. Phys. 29, 2152-2158 (2002)]和 Taylor 和 Rogers 的[“基于 EGSnrc 的 TG-43 参数的蒙特卡罗计算数据库”,Med. Phys. 35, 4228-4241 (2008)]用于模型 IAI-125A 种子和 Kennedy 等人的[“模型 9011 THINSeed™近距离治疗源的 TG-43 剂量学参数的实验和蒙特卡罗确定”,Med. Phys. 37, 1681-1688 (2010)]用于模型 6711 种子的剂量率常数分别为+4.3%(0.962 cGy h(-1) U(-1))、+6.2%(0.98 cGy h(-1) U(-1))、+0.3%(0.925 cGy h(-1) U(-1))和-0.2%(0.921 cGy h(-1) U(-1)),与提议的标准值相比。当前研究与 Solberg 等人和 Meigooni 等人的径向剂量函数之间的差异在 r ≤ 5 cm 时小于 10%,在 r > 5 cm 时增加,在 r = 9 cm 时最大差异为 29%。与 Taylor 和 Rogers 相比,这些差异较小(在 r = 9 cm 时最大为 2%)。对于设计相似的模型 6711(125)I 种子,0.5 ≤ r ≤ 10 cm 时,差异不超过 0.5%。当改变涂层厚度和密度时,径向剂量函数变化 1%。改变截面库和源光谱会使径向剂量函数分别改变 25%和 12%,但这些差异发生在 r = 10 cm 处,此时剂量率非常低。二维各向异性函数的结果与 Solberg 等人的结果最相似,与 Meigooni 等人的结果最不同。从最重要到最不重要的影响二维各向异性函数的模拟条件变量的顺序是光谱、涂层厚度、涂层密度和截面库。
有几种 MC 辐射输运代码可用于计算近距离治疗种子的 TG-43 剂量学参数。自 2007 年 AAPM TG-43U1S1 报告发布以来,这些代码中的物理模型及其相关截面库已经得到了更新和改进。使用现代数据的结果表明,与 TG-43U1S1 报告中推荐的数据相比,这些剂量学参数存在统计学上显著的差异。因此,美国医学物理学家协会等专业协会似乎应该考虑重新评估此类和其他种子的共识数据,并建立一个定期评估的过程,其中共识数据基于仍然是最先进的方法。