Cook Amanda M, Mattioda Andrew L, Ricco Antonio J, Quinn Richard C, Elsaesser Andreas, Ehrenfreund Pascale, Ricca Alessandra, Jones Nykola C, Hoffmann Søren V
1 NASA Ames Research Center , Moffett Field, California, USA .
Astrobiology. 2014 Feb;14(2):87-101. doi: 10.1089/ast.2013.0998. Epub 2014 Feb 10.
We report results from the exposure of the metalloporphyrin iron tetraphenylporphyrin chloride (FeTPPCl) to the outer space environment, measured in situ aboard the Organism/Organic Exposure to Orbital Stresses nanosatellite. FeTPPCl was exposed for a period of 17 months (3700 h of direct solar exposure), which included broad-spectrum solar radiation (∼122 nm to the near infrared). Motivated by the potential role of metalloporphyrins as molecular biomarkers, the exposure of thin-film samples of FeTPPCl to the space environment in low-Earth orbit was monitored in situ via ultraviolet/visible spectroscopy and reported telemetrically. The space data were complemented by laboratory exposure experiments that used a high-fidelity solar simulator covering the spectral range of the spaceflight measurements. We found that thin-film samples of FeTPPCl that were in contact with a humid headspace gas (0.8-2.3% relative humidity) were particularly susceptible to destruction upon irradiation, degrading up to 10 times faster than identical thin films in contact with dry headspace gases; this degradation may also be related to the presence of oxides of nitrogen in those cells. In the companion terrestrial experiments, simulated solar exposure of FeTPPCl films in contact with either Ar or CO2:O2:Ar (10:0.01:1000) headspace gas resulted in growth of a band in the films' infrared spectra at 1961 cm(-1). We concluded that the most likely carriers of this band are allene (C3H4) and chloropropadiene (C3H3Cl), putative molecular fragments of the destruction of the porphyrin ring. The thin films studied in space and in solar simulator-based experiments show qualitatively similar spectral evolution as a function of contacting gaseous species but display significant differences in the time dependence of those changes. The relevance of our findings to planetary science, biomarker research, and the photostability of organic materials in astrobiologically relevant environments is discussed.
我们报告了金属卟啉氯化四苯基卟啉铁(FeTPPCl)在外层空间环境中的暴露结果,这些结果是在“生物体/有机物轨道应力暴露”纳米卫星上原位测量得到的。FeTPPCl暴露了17个月(直接太阳照射3700小时),其中包括广谱太阳辐射(约122纳米至近红外)。受金属卟啉作为分子生物标志物潜在作用的推动,通过紫外/可见光谱对低地球轨道上FeTPPCl薄膜样品在空间环境中的暴露进行了原位监测,并通过遥测进行报告。空间数据得到了实验室暴露实验的补充,该实验使用了覆盖航天测量光谱范围的高保真太阳模拟器。我们发现,与潮湿顶空气体(相对湿度0.8 - 2.3%)接触的FeTPPCl薄膜样品在辐照时特别容易被破坏,降解速度比与干燥顶空气体接触的相同薄膜快达10倍;这种降解也可能与这些单元中氮氧化物的存在有关。在配套的地面实验中,与Ar或CO₂:O₂:Ar(10:0.01:1000)顶空气体接触的FeTPPCl薄膜的模拟太阳暴露导致薄膜红外光谱在1961 cm⁻¹处出现一个谱带的增长。我们得出结论,该谱带最可能的载体是丙二烯(C₃H₄)和氯丙二烯(C₃H₃Cl),它们是卟啉环破坏的假定分子碎片。在空间和基于太阳模拟器的实验中研究的薄膜显示出作为接触气态物种函数的定性相似的光谱演化,但在这些变化的时间依赖性方面存在显著差异。讨论了我们的发现与行星科学、生物标志物研究以及天体生物学相关环境中有机材料光稳定性的相关性。