Suppr超能文献

空间站光化学(PSS)实验:在近地轨道模拟火星表面紫外辐射条件下的有机物。

The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit.

机构信息

1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France.

2Université Grenoble Alpes, CNRS, CNES, IPAG, Grenoble, France.

出版信息

Astrobiology. 2019 Aug;19(8):1037-1052. doi: 10.1089/ast.2018.2001. Epub 2019 Jul 17.

Abstract

The search for organic molecules at the surface of Mars is a top priority of the Mars Science Laboratory (NASA) and ExoMars 2020 (ESA) space missions. Their main goal is to search for past and/or present molecular compounds related to a potential prebiotic chemistry and/or a biological activity on the Red Planet. A key step to interpret their data is to characterize the preservation or the evolution of organic matter in the martian environmental conditions. Several laboratory experiments have been developed especially concerning the influence of ultraviolet (UV) radiation. However, the experimental UV sources do not perfectly reproduce the solar UV radiation reaching the surface of Mars. For this reason, the International Space Station (ISS) can be advantageously used to expose the same samples studied in the laboratory to UV radiation representative of martian conditions. Those laboratory simulations can be completed by experiments in low Earth orbit (LEO) outside the ISS. Our study was part of the Photochemistry on the Space Station experiment on board the EXPOSE-R2 facility that was kept outside the ISS from October 2014 to February 2016. Chrysene, adenine, and glycine, pure or deposited on an iron-rich amorphous mineral phase, were exposed to solar UV. The total duration of exposure to UV radiation is estimated to be in the 1250-1420 h range. Each sample was characterized prior to and after the flight by Fourier transform infrared (FTIR) spectroscopy. These measurements showed that all exposed samples were partially degraded. Their quantum efficiencies of photodecomposition were calculated in the 200-250 nm wavelength range. They range from 10 to 10 molecules·photon for pure organic samples and from 10 to 10 molecules·photon for organic samples shielded by the mineral phase. These results highlight that none of the tested organics are stable under LEO solar UV radiation conditions. The presence of an iron-rich mineral phase increases their degradation.

摘要

在火星表面寻找有机分子是美国宇航局(NASA)火星科学实验室(MSL)和欧洲航天局(ESA)ExoMars 2020 太空任务的首要任务。它们的主要目标是寻找与火星潜在的原始生物化学和/或生物活动有关的过去和/或现在的分子化合物。解释它们的数据的关键步骤是表征火星环境条件下有机物的保存或演化。已经开发了一些专门针对紫外线(UV)辐射影响的实验室实验。然而,实验性的 UV 源并不能完全再现到达火星表面的太阳 UV 辐射。出于这个原因,国际空间站(ISS)可以被有利地用来将在实验室中研究的相同样本暴露在代表火星条件的 UV 辐射下。这些实验室模拟可以通过在 ISS 之外的近地轨道(LEO)进行实验来完成。我们的研究是在国际空间站(ISS)EXPOSE-R2 设施上进行的 Photochemistry on the Space Station 实验的一部分,该实验从 2014 年 10 月到 2016 年 2 月一直在国际空间站外进行。纯或沉积在富含铁的非晶质矿物相上的屈、腺嘌呤和甘氨酸暴露在太阳 UV 下。暴露在 UV 辐射下的总持续时间估计在 1250-1420 小时范围内。每个样本在飞行前后都通过傅里叶变换红外(FTIR)光谱进行了表征。这些测量表明,所有暴露的样本都有部分降解。它们的光分解量子效率在 200-250nm 波长范围内进行了计算。对于纯有机样品,其范围为 10 至 10 个分子·光子,对于被矿物相屏蔽的有机样品,其范围为 10 至 10 个分子·光子。这些结果表明,在 LEO 太阳 UV 辐射条件下,没有一种测试有机物是稳定的。富含铁的矿物相的存在会增加它们的降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验